
/**
* Function: Narcissistic
*
* Returns true if and only if the supplied number is
* narcissistic, as outlined in the statement of Problem 1.
*/
function Narcissistic(number) {

let len = countDigits(number);
let original = number;
let sum = 0;
while (number > 0) {

let digit = number % 10;
sum += Math.pow(digit, len);
number = Math.floor(number/10);

}
return sum === original;

}

/**
* Function: countDigits
*
* Returns the number of digits in the supplied number.
*/
function countDigits(number) {

let count = 0;
while (number > 0) {

count++;
number = Math.floor(number/10);

}
return count;

}

Jerry Cain
CS 106AX

Solution to Section #1

Handout #4S
October 6, 2023

Portions of this handout by Eric Roberts, Patrick Young, and Ryan Eberhardt.

Solution 1: Narcissistic Numbers

– 2 –

Solution 2: Random circles

/*
* File: RandomCircles.js
*
* This program draws a set of 10 circles with different sizes,
* positions, and colors. Each circle has a randomly chosen
* color, a randomly chosen radius between 5 and 50 pixels,
* and a randomly chosen position on the canvas, subject to
* the condition that the entire circle must fit inside the
* canvas without extending past the edge.
*/

/* Constants */

const NCIRCLES = 10;
const MIN_DIAMETER = 10;
const MAX_DIAMETER = 100;
const GWINDOW_WIDTH = 500;
const GWINDOW_HEIGHT = 300;

/* Main function */
function main() {

let gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT);
for (let i = 0; i < NCIRCLES; i++) {

let d = randomInteger(MIN_DIAMETER, MAX_DIAMETER);
let circle = makeRandomColoredCircle(d);
let x = randomInteger(0, gw.getWidth() - d);
let y = randomInteger(0, gw.getHeight() - d);
gw.add(circle, x, y);

}

handleInteractiveDrawing(gw);
}

/* Returns the distance between two given points. */
function getEuclidianDistance(x0, x1, y0, y1) {

return Math.sqrt(Math.pow(x1 - x0, 2) + Math.pow(y1 - y0, 2));
}

/* Returns a GOval with a random color and the provided
* diameter. */
function makeRandomColoredCircle(diameter) {

let circle = new GOval(diameter, diameter);
circle.setFilled(true);
circle.setColor(randomColor());
return circle;

}

– 3 –

Note: on some runs of the program, you might not see 10 circles because some circles will be
drawn white or be drawn on top of previously drawn one, potentially blocking them entirely
from view.

/* Installs mousedown and drag event handlers in order to create a
* circle on mousedown, and increase the size on drag. */
function handleInteractiveDrawing(gw) {

let circle = null;
let centerX = null;
let centerY = null;

let mouseDownHandler = function(e) {

circle = makeRandomColoredCircle(0);
centerX = e.getX();
centerY = e.getY();
gw.add(circle, centerX, centerY);

};
gw.addEventListener("mousedown", mouseDownHandler);

let dragHandler = function(e) {
let radius = getEuclidianDistance(centerX, e.getX(),

centerY, e.getY());
circle.setLocation(centerX - radius, centerY - radius);
circle.setSize(radius * 2, radius * 2);

};
gw.addEventListener("drag", dragHandler);

}

– 4 –

Your total before tip is: $100.
Your final price is: $106.

Solution 3: Tracing function execution
The output of CalculateBill.js is:

For this problem, there are several concepts that we should understand.

(1) Parameters
Look at the following two lines:

let finalPrice = calculateBill(numSalads, numPizzas);
function calculateBill(numPizzas, numSalads) { ... }

Here, note that we actually swap numPizzas and numSalads when passing them as
parameters, so inside calculateBill, numPizzas should be 4 and numSalads should be
6.

There is no connection between the names given to variables in one function, and the
names of the parameters which those variables are assigned to during a function call.
When passing a variable as an argument to a function, JavaScript assigns the first
argument to the first parameter, the second argument to the second parameter, and
so forth, regardless of the names they are given. Giving confusing names to parameters
though, while certainly possible, constitutes bad style and should be avoided.

(2) Closure

Remembering that when you define an inner function within an existing function, we call
that a closure, and closures can access the variables of the outer function. This means:

• In calculateBill, addSaladCosts and addPizzaCosts can both access and
modify total without passing total in as a parameter.

• However, addTax and addTip both require passing total in as a parameter
because they are defined outside of calculateBill.

• Finally, note that even though total is changed in addTax, it will not affect the
value of total in calculateBill.

