
Jerry Cain Handout #18S
CS 106AX November 8-10th, 2023

Section Solution #6

Solution 1: Rationals and Unit Fractions

 # Computes a series of decreasing unit fractions that add up
 # to the provided rational number. We do so by computing the
 # largest unit fraction less than or equal to the supplied
 # rational number, which is 1/ceil(den/num). We then
 # subtract that unit fraction from the original and repeat the
 # same process on the remainder until the remainder is 0.
 def unitFractionSum(r):
 """
 Constructs a list of distinct unit fraction
 that add up to the supplied r.

 Examples:
 unitFractionSum(1/3) -> [1/3]
 unitFractionSum(2/3) -> [1/2, 1/6]
 unitFractionSum(21/23) -> [1/2, 1/3, 1/13, 1/359, 1/644046]
 """
 fractions = []
 while r > 0:
 closest = Rational(1, ceil(r.getDenominator()/r.getNumerator()))
 fractions.append(closest)
 r = r – closest
 return fractions

Defines the same function, except that we no longer constrain r to be
less than 1. We do, however, require that we never use the same denominator
twice, and that the smallest denominator ever used is 2
def unitFractionSum(r):
 """
 Constructs a list of distinct unit fraction
 that add up to the supplied r.
 Examples:
 unitFractionSum(Rational(21, 23)) -> [1/2, 1/3, 1/13, 1/359, 1/644046]
 unitFractionSum(Rational(13, 12)) -> [1/2, 1/3, 1/4]
 unitFractionSum(Rational(5, 2)) ->
 [1/2, 1/3, ..17 terms.. , 1/7894115294, 1/333156570077494116352]
 """
 fractions = []
 min = 2
 while r > 0:
 denom = ceil(r.getDenominator() / r.getNumerator())
 if denom < min: denom = min
 closest = Rational(1, denom)
 fractions.append(closest)
 r = r - closest
 min = denom + 1 # make sure denom isn’t used again
 return fractions

 – 2 –

Solution 2: Defining and Implementing Classes

class PresidentialWordCloud:
 """
 Defines a class capable of storing information about all presidential
 speeches and the most prominent words in each of them.
 """

 def __init__(self, filename):
 """
 Initializes the PresidentialWordCloud using the information
 stored within the file identified by the supplied name.
 """
 self._speeches = {}
 self._speechTags = {}

 scanner = TokenScanner(). # declare one scanner, configure to skip spaces
 scanner.ignoreWhitespace()
 with open(filename) as infile:
 while True:
 line = infile.readline()
 if line == "": break # "" returned only when EOF encountered
 title = line.strip() # strip away trailing newline
 date = infile.readline().strip()
 words = []
 sizes = {}
 while True:
 tag = infile.readline().strip()
 if tag == "": break. # "" marks end of word-color-size list
 scanner.setInput(tag)
 word = scanner.nextToken()
 color = scanner.nextToken() + scanner.nextToken() # "#" + "435812"
 size = int(scanner.nextToken())
 words.append(word)
 if size not in sizes: sizes[size] = []
 sizes[size].append((word, color))

 key = title + ":" + date # assumes dates formatted YYYY-MM-DD
 self._speeches[key] = words
 self._speechTags[key] = sizes

 def getAllWords(self, title, date):
 """
 Returns the sorted list of all prominent words used
 in the speech identifies by the supplied title and date
 """
 key = title + ":" + date
 if key not in self._speeches: return []
 return self._speeches[key]

 def getAllTags(self, title, date, size):
 """
 Returns the sorted list of all prominent (word, color) pairs
 that would be drawn in the supplied font size for the speech
 with the supplied title and date
 """

 – 3 –

 key = title + ":" + date
 if key not in self._speeches: return []
 sizes = self._speechTags[key]
 if size not in sizes: return []
 return sizes[size]

