Jerry Cain Handout #18S
CS 106AX November 8-10%, 2023

Section Solution #6

Solution 1: Rationals and Unit Fractions

Computes a series of decreasing unit fractions that add up
to the provided rational number. We do so by computing the
largest unit fraction less than or equal to the supplied
rational number, which is 1/ceil (den/num). We then

subtract that unit fraction from the original and repeat the
same process on the remainder until the remainder is 0.

def unitFractionSum(r):

win

#
#
#
#
#
#

Constructs a list of distinct unit fraction
that add up to the supplied r.
Examples:
unitFractionSum(1/3) -> [1/3]
unitFractionSum(2/3) -> [1/2, 1/6]
unitFractionSum(21/23) -> [1/2, 1/3, 1/13, 1/359, 1/644046]
fractions = []
while r > O0:
closest = Rational(l, ceil (r.getDenominator()/r.getNumerator()))
fractions.append(closest)
r = r — closest
return fractions

Defines the same function, except that we no longer constrain r to be
less than 1. We do, however, require that we never use the same denominator
twice, and that the smallest denominator ever used is 2
def unitFractionSum(r):
Constructs a list of distinct unit fraction
that add up to the supplied r.
Examples:
unitFractionSum(Rational (21, 23)) -> [1/2, 1/3, 1/13, 1/359, 1/644046]
unitFractionSum(Rational (13, 12)) -> [1/2, 1/3, 1/4]
unitFractionSum(Rational (5, 2)) ->

[1/2, 1/3, ..17 terms.. , 1/7894115294, 1/333156570077494116352]

win

fractions
min = 2
while r > 0:

denom = ceil (r.getDenominator() / r.getNumerator())

if denom < min: denom = min

closest = Rational(l, denom)

fractions.append(closest)

r = r - closest

min = denom + 1 # make sure denom isn’t used again
return fractions

[1

Solution 2: Defining and Implementing Classes

class PresidentialWordCloud:
Defines a class capable of storing information about all presidential
speeches and the most prominent words in each of them.

win

def init_(self, filename):
Initializes the PresidentialWordCloud using the information
stored within the file identified by the supplied name.
self. speeches = {}
self. speechTags = {}

scanner = TokenScanner(). # declare one scanner, configure to skip spaces
scanner.ignoreWhitespace ()
with open(filename) as infile:
while True:
line = infile.readline()

if line == "": break # "" returned only when EOF encountered
title = line.strip() # strip away trailing newline

date = infile.readline() .strip()

words = []

sizes = {}

while True:
tag = infile.readline() .strip()
if tag == "": break. # "" marks end of word-color-size list
scanner.setInput (tag)
word = scanner.nextToken ()
color = scanner.nextToken() + scanner.nextToken() # "#" + "435812"
size = int(scanner.nextToken())
words . append (word)
if size not in sizes: sizes[size] = []
sizes([size] .append((word, color))

key = title + ":" + date # assumes dates formatted YYYY-MM-DD
self. speeches[key] = words
self. speechTags[key] = sizes

def getAllWords (self, title, date):
Returns the sorted list of all prominent words used
in the speech identifies by the supplied title and date
key = title + ":" + date
if key not in self. speeches: return []
return self. speeches[key]

def getAllTags(self, title, date, size):
Returns the sorted list of all prominent (word, color) pairs
that would be drawn in the supplied font size for the speech
with the supplied title and date

win

key = title + ":" + date

if key not in self. speeches: return []
sizes = self._ speechTags[key]

if size not in sizes: return []

return sizes[size]

