
Jerry Cain Handout #08
CS 106AX October 16, 2023

Assignment #3—Wordle

This assignment and assignment handout was written by Jonathan Kula, with help from Jerry Cain, Ryan Guan, Sophie Andrews. It
has been modified by Avi Gupta.

Due: October 23rd, 2023, at 5:00 P.M.

Your job for this assignment is to implement the word game by Josh Wardle that took the
internet by storm—the one and only Wordle. This assignment will extend the skills you
honed with Breakout and take them to the next level, while giving you some introductory
practice with strings, arrays, and aggregates.

This assignment is also large. The primary challenge will be in developing a clean
architecture for the state of your game, using that to update the view of your game (i.e.,
what the user sees), and handling user actions (e.g., clicking, or typing a letter). This is
totally in your wheelhouse, and we’ll help you structure your implementation so that
everything stays manageable.

What Is Wordle?
Wordle is a deceptively simple word-guessing game created by Josh Wardle as a small
game for he and his partner to play. The game went
viral, and it was quickly picked up by the New York
Times. In fact, you can play it on the NYT's website
if you’d like to get a sense for how it’s played.

In each game, there is a secret 5-letter word that is
selected. It is the player’s job to try and guess the
word in 6 tries. Here’s an example – each time I
guess a word, some information is revealed:

• Some letters are highlighted in dark gray.
This means those letters don’t appear in the
word at all.

• Some letters are highlighted in yellow. This
means those letters do appear in the word,
but not at that location.

• Some letters are highlighted in green. This
means those letters are correctly placed.

Note that every guess must also be an English word!
For ease of bookkeeping, as you make guesses, the
keyboard at the bottom of the screen updates with
the latest information.

 – –

Table of Contents

What	Is	Wordle?	 1	
Learning	Goals	 3	

Getting	Started:	Tips	&	Tricks	 3	

Part	I:	The	View	 4	
Object	1:	The	“Guess	Square”	 5	
Object	2:	A	“Guess	Row”	 6	
Object	3:	Guess	Grid	 7	
Object	4:	Alerts	 8	
Object	5:	The	Keyboard	 9	
And	now:	Putting	it	all	together	 9	

Part	II:	Program	State	 10	
Task	1:	Designing	State	 10	
Task	2:	Linking	State	&	View	 11	

Part	III:	Interactions	 13	
Task	1:	On-Screen	Keyboard	 13	
Task	2:	Connecting	to	the	real	keyboard	 14	

Part	IV:	Bask	in	your	success!	 15	
General	Advice	 16	

Possible	Extensions	 16	

 – –

Learning Goals
Here’s why we’re giving this assignment, and what you can expect to take away from it:

● Students know how to and have practice managing more complex program state.
o Students have practice designing their program’s state.
o Students have practice using that state to update a display shown to the

user.
o Students have practice updating that state given some user action.

● Students have shown mastery with use of event listeners and callback functions.
● Students are comfortable with basic string manipulation, including: taking

substrings, determining character-by-character equality, etc.
● Students can access elements of, iterate over, and append to arrays.
● Students have successfully designed and implemented a complex game they can

show off to their friends.

Getting Started: Tips & Tricks
Start by just playing a few different games of Wordle! (hello wordl is a good place to do
this, as it will give you a new word each page refresh).

● Get a sense for how it plays. What happens when you win? What happens when
you lose? What happens in edge cases– like, for example, if you press "enter"
before typing in a full word, or type in an invalid word, or continue typing once
all 5 spots are filled? What about if there are two of the same letter in a guess?

● As you’re trying out Wordle, consider what the program needs to keep track of.
For example, it probably needs to store and remember the secret word; what else
might it need to keep track of?

● Thinking about these questions will kickstart ideas for things you’ll need to keep
in mind while you’re designing your own version.

● Use your main Wordle function for debugging. Several times throughout this
handout, we’ll ask you to check your work so far by adding some throwaway test
code to your Wordle function (e.g. to quickly add something to the GWindow–
just to make sure it looks right!). This, combined with console.log can be a
powerful tool to test and debug your code while you work on it!

● Important Decomposition Tip: We recommend keeping all the functions you
create (for example, a function to create a guess square) as inner functions within
the main Wordle function. In our solution, we add several functions inside
Wordle, and no other functions inside of those.

o This allows you to easily access the “state” (ex: the secret word) without
passing those variables as arguments into all your helper functions.

Once you have a good sense for what Wordle is, I recommend reading through the entire
handout before getting started on Part 1. Knowing where you’re going and letting those

 – –

ideas marinate while you work will help provide direction as you work on earlier parts,
and you’ll come to later parts feeling more prepared.

Part I: The View
"The view" refers to the display: This is what the user sees and interacts with. We’re
going to sketch out (in code!) what your game of Wordle will look like; then, later, we’re
going to start thinking about (1) how to store what’s currently going on in a game of
wordle (the state), and (2) connecting that state (i.e. what’s going on) to the view (i.e.
making it so when you type letters or guess a word, that’s all reflected in what a user
sees!)

Here is where you’ll start, and what your completed game of Wordle will look like:

We’ll build up to it one piece at a time!

 – –

Object 1: The “Guess Square”

Given a letter guess, a provided color, and a position on the GWindow, write a function
that produces a “guess square.”

Tips:

● Once again, we recommend writing all helper functions in this assignment as
inner functions within the Wordle function.

o Style: Please write brief comments above each function describing the
functionality. This will help you revisit your code and also will help the
SLs understand your code!

● Do not assume that the provided letter will be capitalized.

● A "guess square" should be sized using the GUESS_SQUARE_SIZE constant.

● You’ll need to package together two GObjects into a compound placed at the
provided position. They are:

o GRect for the background square. Note in the completed game image that
although each guess square might be filled with a different color, each
square always has a light gray border color, making it visible even if no
guess is present.

o GLabel for the letter. You’ll find the GLabel’s setTextAlign and
setBaseline methods particularly helpful in centering the text. You
can also set the guess font and text default color using provided constants.

Decomposition check! Edit Wordle()to call the function you made to produce a guess
square, and add it to the GWindow. You should be able to draw any of the following
individual squares at any position on the GWindow by simply calling the function with
different arguments.

 – –

Object 2: A “Guess Row”

Now that we’re easily able to create a square that will hold a letter guess, it’s time to
leverage that function to create a row of squares at any vertical position that could be
used to hold a player’s word guess. It will look like this:

Tips:

● You’ll find the NUM_LETTERS constant useful here.
● Note the spacing between each guess square; each of them is surrounded on all

sides by a distance of GUESS_MARGIN. (This means that if GUESS_MARGIN is
8, there is an 8px gap on either side, and 16px between each guess square).

● Also note that the margin and GUESS_SQUARE_SIZE are calculated such that it
will exactly fit in the window width if done correctly; this also means you can
always assume that we start at x = 0, i.e., the far-left side of the GWindow.

As you’re coding up your guess row, you might be thinking about how you would
highlight each individual square. If you are, that’s great! Continue thinking about this,
but for now, go ahead and keep them all some default color. We’ll connect colors to
squares later when we start thinking about state.

Decomposition check! Call the function you created to produce a guess row, and add it
to the GWindow. You should be able to go between any of the following by changing the
parameters to that function call. You should also be able to freely reposition the row
anywhere in the window by modifying parameters of that same function call.

 – –

Object 3: Guess Grid

You’ve got squares. You’ve got rows! Now, it’s time to put them all together:

Tips:

● You’ll find the NUM_GUESSES constant useful here.
● Note, again, the use of the margin: there is only one GUESS_MARGIN’s worth of

space next to the top, but there are two GUESS_MARGIN’s worth of space
between each row.

● Again, don’t worry about highlighting right now! We’ll take care of this in the
next part.

Decomposition check! For now (until Part II), hard-code a data structure (hint: array) of
fake word guesses and use this for testing. Syntax reminder: If you want to write an array
yourself, you can write something like ["hello", "world"] – this will create an
array with 2 entries, being the strings "hello" and "world".

Call your function to produce a guess grid, and add it to the GWindow; by changing the
parameters to that function, you should be able to produce the following:

 – –

Object 4: Alerts

Now that we have the grid established, we need a way to tell the user about things that
happen (in various colors):

● We’ve precomputed where the alert should go; check out the ALERT_X and
ALERT_Y constants.

● Again, you’ll find the GLabel’s setTextAlign and setBaseline methods
particularly helpful in centering the text.

Decomposition check! Call your function to produce an alert and add it to the
GWindow; by changing the parameters to that function, you should be able to produce
the following:

 – –

Object 5: The Keyboard

The final individual step is to place the keyboard down on the grid; we provide a new
GKeyboard object. Take a look at the GKeyboard.js file and read the header
comment to understand how to use it.

Tips:

● We’ve pre-computed the location to place this keyboard at: check out
KEYBOARD_X and KEYBOARD_Y.

● It should be as wide as the GWindow.

And now: Putting it all together

Finally, create a function called draw that (1) clears the GWindow, and then (2) draws
the GuessGrid, an Alert, and a GKeyboard. Verify that you can change
NUM_GUESSES and NUM_LETTERS and your code handles it gracefully. (It’s OK if the
letters get too big; you can adjust the GWINDOW_WIDTH to accommodate high numbers
of letters).

 – –

Part II: Program State
You have a swanky view all set up now. Great job!! However, right now, the view
doesn’t really do or respond to anything. The brain of our program doesn’t really
function yet.

We’re going to fix that now!

We’re going to start with designing our program state and making the view use this
state. Then in Part III, we’ll link together player actions to our state.

Task 1: Designing State

We need to tell the “brain” of our program what it needs to keep track of. This accounting
makes up the state (also known as the model) of our program. You can think of the state
simply as variables that all of your inner functions can use. State should be minimal to
make our code as simple as possible; we shouldn’t add top-level variables that are
redundant.

Consider the game of Wordle. What does it need to keep track of in order to work?

● One such example is the secret word. What other information do you need to
store?

o For example, do you need to store the text the user has typed in?
o What about whether or not a particular letter should be colored gray,

yellow, or green? Do we need to store that, or can that be calculated on the
fly from the other information you’re storing?

o What about whether or not you should be showing an alert?
o How does your state keep track of if a player has simply typed in 5 letters,

versus having submitted a guess? (Does it need to?)
● You can use any types you wish for your state; some things may make sense as

strings; others may make sense as arrays; etc.
Once you have figured out what you need to store, these can all become local variables
placed at the start of the top-level Wordle function.

This may be an iterative process. Make your best-informed decisions now, and if you
discover that some state is no longer necessary, refactor your code to remove it; or if you
discover you need more state, feel free to add it.

 – –

Task 2: Linking State & View

Now that you’ve designed the brain of your program, it’s time to use that brain to update
our view.

Update your draw function, and then your guess grid and guess row functions, to use the
current state of your program. Between the arguments to the functions you’ve already
designed and the state of the program, you should be able to add the following
functionality:

1. The text in your view should match the state in your program.
a. Make sure this is working before moving on to highlighting! You should

be able to reproduce the guess grid on page 7 just by editing your state.
2. The squares should have colors that are accurate to the rules of Wordle:

a. In each guess, a letter should be highlighted in gray
(BACKGROUND_WRONG_COLOR) if that letter does not appear in the
word at all.

b. A letter should be highlighted in green
(BACKGROUND_CORRECT_COLOR) if that letter appears in the word at
that location.

c. A letter should be highlighted in yellow
(BACKGROUND_FOUND_COLOR) if that letter appears in the word, but at
a different location. A few nuances to think about:

i. If I guess “HELLO” for the secret word “WORLD”, the second
“L” should be green and the first “L” should be gray, not yellow.

ii. As another example of this behavior, if I guess “REARS” for the
secret word is “TRAIN”, the first “R” should be yellow, but the
second one should be gray.

iii. What do you expect to happen if the secret word is “LLAMA”and
the guess is “TROLL”?

3. Your keyboard should update to the correct colors as well (hint: check out the
documentation for setKeyColor in GKeyboard.js)

a. Consider that unlike the letter highlighting in the squares, keyboard
highlighting partly depends on previous guesses.

b. An edge case to think about: If a letter is correct (green) in the first guess,
but in the wrong place (yellow) in the second guess, your keyboard should
still show the color green after the second guess.

Keep decomposition in mind as you work towards accomplishing this task; as just a
single example, you might create a function that, given a guess and the secret word,
returns an array of indices in the guess that match the secret word. (e.g. a guess of
“HELLO” for the secret word “WORLD” could return [3]), and you know that these
letters should be highlit green. By decomposing in this way, you can also quickly test

 – –

your functions right inside Wordle() (for example, by just adding a couple extra
console.log statements!) without relying on all your other code.

When you’re done testing, you can use the getRandomWord() function to retrieve a
random common word from the dictionary to use as your secret word.

See the next page for some examples of what you should be able to do by manually
editing your state (i.e., preloading your state variables with certain values; no usage of
input from keyboard yet).

At this point, if you hand-edit your state in the Wordle() function, you should be able
to produce any of the screenshots below: (For this first set, the secret word is “valid”):

If you change the secret word to “libel,” it should look like this:

And you should also be able to set and clear alerts by hand-editing your state:

 – –

Part III: Interactions
You now have your state connected to your view! You’re almost to the end of this road;
now, in order to change what’s displayed, all you have to do is change those state
variables and call draw.

The high-level procedure is: whenever a user types (or clicks) a key, you update the
relevant state and re-draw the board.

This is a common pattern called MVC (“Model-View-Controller”) that you’ll see all the
time: you model your application in some way (this is the state you created!). The view
(i.e., the GWindow!) is created from the model (i.e., program state). Then, finally, when
the user interacts with controls, that will manipulate the state (which updates the view).

Task 1: On-Screen Keyboard

Your first task is to get the on-screen keyboard working (this is 90% of the work in this
part, as the code you write here should be easily reusable for your physical keyboard).

If we take a look at the Gkeyboard.js file’s documentation, we’ll find that we can use
addEventListener to listen to a few different keyboard events. In particular:

● We can use the keyclick event to trigger a function when a user presses a
letter. (What is the parameter(s) that the callback function accepts? How do you
know which letter was clicked?)

● We can use the enter event to trigger a function when a user presses the enter
button on the on-screen keyboard.

● We can use the backspace event to trigger a function when a user presses the
backspace button on the on-screen keyboard.

 – –

Pay special attention to the letter casing you expect. We want to display all text
uppercase, but the keyclick event gives you letters in lowercase; etc.

You will need to implement the following interactions while considering the following
questions:

● When a user presses a letter, you should add that letter to their current guess-in-
progress.

o What happens if a user presses a letter when they already have the
maximum number of letters?

● If there is an alert present (e.g., about a word not being valid), you should clear it
when the user presses a letter.

● When a user presses backspace, you should remove a letter from their current
guess-in-progress.

o What happens if a user presses backspace when their guess-in-progress is
already empty?

● When a user presses enter, you should submit their guess if it is valid.
o You should notify the user and not accept their guess if it is not a valid

English word. (Check out the provided function, isEnglishWord)
o You should not accept their guess if it is too short.
o After you accept their guess, if they have won the Wordle, you should

notify them (and likewise if they have lost).
● If the game is over, you shouldn’t accept any new events.

Task 2: Connecting to the real keyboard

The last thing you need to do is connect the real keyboard to your program, so you don’t
have to find-and-click each of the letters!

The GWindow responds to keydown events that allow you to intercept when a user
presses a key. You can use the provided getKeystrokeLetter,
isEnterKeystroke, and isBackspaceKeystroke with the event object to make
decisions about what to do. You should be able to easily connect this to the callback
functions you wrote for Task 1.

And with that…

Part IV: Bask in your success!
If everything has gone smoothly, you have just implemented a fully operational
version of Wordle! Give yourself a pat on the back– this is not a trivial piece of
software, and you’ve done it within just the first 4 weeks of the class. Share it with your
friends and your classmates!!

 – –

General Advice
● Start early. This is a large assignment, and we are happy to help you at each stage

of the process. The assignment is also brand new, so we don’t have a history to
rely on to anticipate what your pain points will be.

● Be thoughtful about design. Bad design tends to snowball. Having cleanly
decomposed code at each stage will make the next stage significantly easier.
We’re happy to help you in office hours!!

o When you make design decisions, ask yourself why you chose to design it
that way, and write it down somewhere for yourself (for example, in an
inline comment). You’ll thank yourself later when you wonder why you
made those decisions in the first place!

o Don’t be afraid to iterate either. You may decide that some design choice
that sounded good at one point eventually turns out to be a bad one. It’s
OK—in fact, it’s perfectly normal—to reconsider previous choices. If you
documented why you made the decisions you did, you’ll be able to decide
whether you should stick with the original decision or change it.

● Don’t be afraid to ask for help!
● Test often! If you follow the order of instructions in this handout, you should be

able to test each individual component, object, and task as you write them.

Possible Extensions
● Animations. In the NYT’s Wordle, their guess squares bounce when a letter is

typed, and squares flip over when the correct word is found.
● Implement hard mode. Require the user to use letters revealed in prior guesses. If

a guess correctly places a letter, then all subsequent guesses must place that same
letter in the correct location. And if a guess identifies a letter that belongs
somewhere else in the word, all subsequent guesses must include that letter
somewhere as well.

● Multi-wordle. You could add additional concurrent Wordle games, like what
Quordle does.

● Allow replay. Prompt the player to play again and reset the state of your
application to allow that.

● Keep score. Keep track of how well a player is doing and give them a score.
There are many ways you could do this, of varying complexity

● Something else? There are plenty of ways to extend Wordle– we’re excited to see
what you come up with!

