Jerry Cain Handout #09S
CS 106AX October 20, 2023

Solutions for Section #3

Section solution by Jerry Cain.
Solution 1: String Split

function split(str, delimiters) {
let start = 0;
let fragments = [];
for (let i = 0; i1 <= str.length; i++) {
if (i === str.length || delimiters.indexOf (str.charAt(i)) !== -1)
let fragment = str.substring(start, 1i);
fragments.push (fragment) ;
start = 1 + 1;
}
}

return fragments;

Some thought questions to ensure you understand the solution:
'] Why does the for loop test rely on <= instead of <?

[J What’s the best description you have for what iis tracking on behalf of the
algorithm?

(] Why does the if test check to see if i === str.length first before
advancing on to check the return value of index0£?

Solution 2: Strings, Arrays, and Disguised Algorithms

a) The provided code—batty variable names notwithstanding—is an implementation of
Kadane’s algorithm, which uses a technique called dynamic programming to
compute the largest subarray sum in an array of integers.

perplexity([-2, 1, -3, 4, -1, 2, 1, -5, 7, -10]);

produces the following

-2 1 1 4 4 5 6 6 8 8

b) The provided code is a key contribution to the implementation of the Knuth-Morris-
Pratt algorithm, which works to find a particular substring within a larger string. In
particular, result[i] stores the length of the longest proper prefix of
str.substring(0, i + 1) that’s also a proper suffix. result[9], for instance,
say that the first four characters of str match the last four characters of str.

0 1 2 0 1 2 3 3 3 4

Solution 3: Keith Numbers

/

*

*

*

T T

Predicate Function: isKeithNumber
Returns true if and only if the supplied integer,
assumed to be positive, is a Keith number.

It does so by maintaining as much of the Fibonacci-like
sequence needed to generate the next sequence number,

and stops when the most recently introduced number either
equals n (yay!) or exceeds it (opposite of yay!)

/

function isKeithNumber (n) {

if (n <= 0) return false;

let partials = createDigitsArray(n);
while (partials[partials.length - 1] < n) {
let sum = sumArray(partials); // see Lecture 08 slides

partials.push (sum) ;
partials.shift();
}

return partials|[partials.length - 1] === n;

/**

*

A

Function: createDigitsArray

Accepts an integer called n (assumed to be positive) and produces an
array of all of its digits, in order, such that the most significant
digit is in the leading position and the least significant digit is in
the final position.

/

function createDigitsArray(n) {

}

let digits = [];
while (n > 0) {
let digit = n % 10;
digits.push(digit);
n = Math.floor (n/10);
}
digits.reverse();
return digits;

Some thought questions to ensure you understand the solution:

0

0

What does the use of array throughout the implementation of isKeithNumber buy you? What
would have been the alternative?

How would the implementation of isKeithNumber need to change had the implementation of
createDigitsArray not reversed the digits array just before returning it?

What’s the advantage of calling shift on the partials array within isKeithNumber? Had
the shift call been omitted, how could the implementation of isKeithNumber change to
account for the omission?

Note that the while loop test within isKeithNumber uses < instead of <=. What would have
happened had you accidentally used <= instead?

Solution 4: RNA, Codons, and Data Structures
/ * %

* Predicate Function: mappingIsValid

* Returns true if the supplied gene is a valid encoding
* of the supplied amino acid sequence, and false otherwise.
*/
function mappingIsvValid(gene, sequence) {
if (gene.length !== 3 * (sequence.length + 2)) return false;

let start = gene.substring (0, 3);
if (start !== START CODON) return false;

gene = gene.substring(3);
for (let i = 0; i < sequence.length; i++) {
let codons = MAPPINGS[sequence[i]];
let codon = gene.substring (0, 3);
if (codons.indexOf (codon) === -1) return false;
gene = gene.substring(3);

}

let stop = gene;
return STOP_CODONS.indexOf (stop) !== -1;

