
Jerry Cain Handout #09S
CS 106AX October 20, 2023

Solutions for Section #3

Section solution by Jerry Cain.

Solution 1: String Split

function split(str, delimiters) {
 let start = 0;
 let fragments = [];
 for (let i = 0; i <= str.length; i++) {
 if (i === str.length || delimiters.indexOf(str.charAt(i)) !== -1) {
 let fragment = str.substring(start, i);
 fragments.push(fragment);
 start = i + 1;
 }
 }
 return fragments;
}

Some thought questions to ensure you understand the solution:
• Why does the for loop test rely on <= instead of <?
• What’s the best description you have for what i is tracking on behalf of the

algorithm?
• Why does the if test check to see if i === str.length first before

advancing on to check the return value of indexOf?

Solution 2: Strings, Arrays, and Disguised Algorithms
a) The provided code—batty variable names notwithstanding—is an implementation of

Kadane’s algorithm, which uses a technique called dynamic programming to
compute the largest subarray sum in an array of integers.

perplexity([-2, 1, -3, 4, -1, 2, 1, -5, 7, -10]);

produces the following

b) The provided code is a key contribution to the implementation of the Knuth-Morris-

Pratt algorithm, which works to find a particular substring within a larger string. In
particular, result[i] stores the length of the longest proper prefix of
str.substring(0, i + 1) that’s also a proper suffix. result[9], for instance,
say that the first four characters of str match the last four characters of str.

-2 1 1 4 4 5 6 6 8 8

 0 1 2 0 1 2 3 3 3 4

 – 2 –

Solution 3: Keith Numbers
/*
 * Predicate Function: isKeithNumber
 * ---------------------------------
 * Returns true if and only if the supplied integer,
 * assumed to be positive, is a Keith number.
 *
 * It does so by maintaining as much of the Fibonacci-like
 * sequence needed to generate the next sequence number,
 * and stops when the most recently introduced number either
 * equals n (yay!) or exceeds it (opposite of yay!)
 */
function isKeithNumber(n) {
 if (n <= 0) return false;
 let partials = createDigitsArray(n);
 while (partials[partials.length - 1] < n) {
 let sum = sumArray(partials); // see Lecture 08 slides
 partials.push(sum);
 partials.shift();
 }
 return partials[partials.length - 1] === n;
}

/**
 * Function: createDigitsArray
 * ---------------------------
 * Accepts an integer called n (assumed to be positive) and produces an
 * array of all of its digits, in order, such that the most significant
 * digit is in the leading position and the least significant digit is in
 * the final position.
 */
function createDigitsArray(n) {
 let digits = [];
 while (n > 0) {
 let digit = n % 10;
 digits.push(digit);
 n = Math.floor(n/10);
 }
 digits.reverse();
 return digits;
}

Some thought questions to ensure you understand the solution:

• What does the use of array throughout the implementation of isKeithNumber buy you? What
would have been the alternative?

• How would the implementation of isKeithNumber need to change had the implementation of
createDigitsArray not reversed the digits array just before returning it?

• What’s the advantage of calling shift on the partials array within isKeithNumber? Had
the shift call been omitted, how could the implementation of isKeithNumber change to
account for the omission?

• Note that the while loop test within isKeithNumber uses < instead of <=. What would have
happened had you accidentally used <= instead?

 – 3 –

Solution 4: RNA, Codons, and Data Structures
/**
 * Predicate Function: mappingIsValid
 * ----------------------------------
 * Returns true if the supplied gene is a valid encoding
 * of the supplied amino acid sequence, and false otherwise.
 */
function mappingIsValid(gene, sequence) {
 if (gene.length !== 3 * (sequence.length + 2)) return false;

 let start = gene.substring(0, 3);
 if (start !== START_CODON) return false;

 gene = gene.substring(3);
 for (let i = 0; i < sequence.length; i++) {
 let codons = MAPPINGS[sequence[i]];
 let codon = gene.substring(0, 3);
 if (codons.indexOf(codon) === -1) return false;
 gene = gene.substring(3);
 }

 let stop = gene;
 return STOP_CODONS.indexOf(stop) !== -1;
}

