
Jerry Cain Handout #15
CS 106AX November 1, 2023

Section Handout #5

Problem 1: Finding duplicates in arrays
Download the starter code from the course website and open it in PyCharm. Open
find_duplicates.py, and write a function

def findDuplicate(array)

that returns the first element in array that appears more than once. If there is no
duplicated value in the array, findDuplicate should return the value None.

You can run the program by selecting find_duplicates to the left of the green “play”
button in the upper right corner, then clicking “play.”

The following examples illustrate the values that findDuplicate should return:

findDuplicate([1, 2, 3, 4, 3, 2]) ® 2
findDuplicate(['a', 'b', 'c', 'd', 'c']) ® 'c'
findDuplicate([1, 2, 3, 4, 5, 6, 7]) ® None
findDuplicate([]) ® None

Problem 2: Reading data structures from files
In World War II, the German Enigma operators used a codebook to set up the machine
for each day’s transmission. The complete settings consisted of the following pieces of
information (of which you implemented only the second in Assignment #4):

• The rotor order. The wartime Enigma machines came equipped with a box of five

rotors, which could be inserted into the machine in any order. The codebook told the
operator which rotors to choose for the three rotors. For example, the rotor order 513
asks the operator to use stock rotor #5 as the slow rotor, stock rotor #1 as the medium
rotor, and stock rotor #3 as the fast rotor.

• The rotor setting. The rotor setting was a three-letter code showing what letters should
be set on the three rotors. For example, several examples in the Adventure handout
used the setting JLY.

• The Stecker pairings. During the war, the German military also added a plug board
(Steckerbrett in German) to the front of the apparatus, which would swap pairs of
letters at the beginning and end of the encryption process. Although the actual Enigma
machine typically used ten pairs of letters in its Stecker pairings, this problem assumes
that there are always four Stecker pairs, mostly so the examples fit on the page.

Your job in this problem is to read a data file containing these codebook values for every
day in a year. Each line of the file has the form

 – 2 –

date order setting stecker

where the individual components of the line have the following values:

• The date component is the date, written as a string (without the quotes).
• The order component is the rotor order, written as a three-digit integer.
• The setting component is the rotor setting, written as a string of three letters.
• The stecker component consists of four letter pairs separated by spaces.

For example, the line

1-Feb-44 241 YVM AC LS BQ WN

tells the operator that on February 1st, 1944, the rotors should be inserted in the order 241,
that the rotors should be rotated to show the letters Y, V, and M, and that four wires should
be added to the plug board connecting the pairs of letters AÖC, LÖS, BÖQ, and WÖN.

You can run this program by selecting enigma_settings next to the “play” icon in the
upper right of PyCharm. For this problem, your job is to open enigma_settings.py and
write the function

def readEnigmaCodebook(filename)

which reads a file consisting of lines such as the example shown on the preceding page
and returns a dictionary linking dates to dictionaries describing the setting. The
components of each setting dictionary are:

• A rotorOrder field, which is an integer
• A rotorSetting field, which is a three-letter string
• A steckerPairings field, which is an array of four two-letter strings

Suppose, for example, that the file Feb44.txt has the following contents:

Calling readEnigmaCodebook("EnigmaCodebook.txt") should produce the following
data structure:

{
 '1-Feb-44': {'rotorOrder': '241',
 'rotorSetting': 'YVM',
 'steckerPairing': ['AC', 'LS', 'BQ', 'WN']},
 '2-Feb-44': {'rotorOrder': '135',
 'rotorSetting': 'FQW',
 'steckerPairing': ['DS', 'VJ', 'FS', 'QH']},
 '3-Feb-44': {'rotorOrder': '354',
 'rotorSetting': 'NKT',

 – 3 –

 'steckerPairing': ['DY', 'CF', 'WN', 'OV']},
 '4-Feb-44': {'rotorOrder': '421',
 'rotorSetting': 'PHP',
 'steckerPairing': ['KD', 'FQ', 'CO', 'VJ']},
 '5-Feb-44': {'rotorOrder': '243',
 'rotorSetting': 'RZW',
 'steckerPairing': ['MK', 'GO', 'RQ', 'XT']}
}

Note: Typically, we would rather store the settings as class-based objects instead of
dictionaries. However, we are using dictionaries in this problem to give you some extra
practice with using them, and because we haven’t fully covered classes in lecture yet.

In answering this question, you should keep the following points in mind:

• All you have to do is read the data into the internal structure. Any code that uses
the codebook data structure is the responsibility of your clients.

• You do not need to do any error-checking. Thus, you may assume that the file
exists and that every line in the file is properly formatted with exactly one space
between each field.

