
Jerry Cain            Handout #16S 
CS106AX      November 3, 2023 

Midterm Examination Solution 
 

The course staff spent the weekend reading through your midterms, and I’m happy to 
report they’ve been graded, and your results have already been published via Gradescope.  
The exam was intended to be challenging, but many of you did brilliantly, and most of 
you did well beyond what I expected.  I’m happy to go with a traditional curve for an 
accelerated course, where I set the median grade to map to one of the higher A- grades. 
 
The complete histogram of score is presented below, where each dot represents a single 
exam score: 
 

 
 
You can determine your letter grade by looking up your score in the following table: 

 
Median = 53.5 

 
Range Grade   N 
67–70   A+ 5 
56–66   A 13 
47–55   A– 9 
38–46   B+ 6 
33–37   B 1 
28–32   B– 1 
24–37   C+ 0 
19–23   C 2 
13–18   C– 1 
00–12   D 1 
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Solution 1: Simple JavaScript expressions, statements, and methods (10 points) 
(1a) [3 points] Compute the value of each of the following JavaScript expressions: 
 

10 % 5 + 10 % 15 10 

5 > 3 || 10 / 0 === 0 true 

10 + 15 + "XYZ" + 7 * 8
 

"25XYZ56" 
 
 
 
(1b) [3 points] Assume that the function crunch has been defined as given below: 
 

function crunch(n) { 
   while (n >= 10) { 
      let k = 1; 
      while (n > 0) { 
         k *= n % 10; 
         n = Math.floor(n / 10); 
      } 
      n = k; 
   } 
   return n; 
} 

 
 What is the value of crunch(112911)? 

 
Each iteration of the outer while loop computes the product of all the 
digits comprising n and updates n to be that product until it becomes a 
single digit number, at which point it is forever its own digit product, so it 
breaks from the loop. 
 
n is initially 112911, which evolves into 18, which evolves into 8. 
Therefore, crunch(112911) returns 8. 
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(1c) [4 points] What output is printed by a call to whitney()? 
 
function whitney() { 
 let doris = "madonna"; 
 let pink = function(x, y, s) { 
    return s.substring(x) + doris.substring(x, y); 
 }; 
 doris = vocalist(pink, doris.indexOf("a"), doris.lastIndexOf("on"));
 console.log(doris); 
} 
 
function vocalist(fn, x, y) { 
 let dolly = fn(x, y, "beyonce"); 
 dolly += "789".charCodeAt(2) - "123".charCodeAt(0); 
 return dolly.toUpperCase(); 
} 
 
 

EYONCEAD8 
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Solution 2: Using graphics and animation (15 points) 
Implement a graphical program that populates an initially empty graphics window with 
circles, one every 200 milliseconds, without end. Each circle should be 20 pixels in 
diameter, filled, and both the border and fill color should initially be "Green". The 
position of each circle should be random as well, though you should ensure the entirely of 
the circle fits within the graphics window. Once placed, the circle should be removed 
from the graphics screen after three full seconds (or rather, 3000 milliseconds) if it hasn’t 
already been removed by a pair of mouse clicks, as described below. 
 
The program should also respond to mouse clicks, and whenever you click on a green 
circle, its color should change to "Yellow". Whenever you click on a yellow circle, the 
circle should be removed from the graphics window. If there are multiple circles stacked 
at a particular location, your click need only impact one of them (and most likely, the one 
most recently added to the graphics window). 
 
A few things: 
 

• You already know that all objects respond setColor, which allows you to specify 
what color the border (and unless specified to be different, the interior) should be. 
There is also the getColor method, that returns the color as a string. 

• gw.remove(object) removes the identified object if it appears in the graphics 
window. If object is no longer in the graphics window but gw.remove(object) is 
called anyway, the call to gw.remove(object) has no effect. 

• Recall that setInterval(func, period) schedules func to execute every 
period milliseconds but that setTimeout(func, delay), on the other hand, 
schedules func to execute just once, delay milliseconds in the future. 

 
Use the space on the next page to present your implementation. 
 
	  

(space for the answer to problem #2 appears on the next page) 
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/* Constants */ 
const GWINDOW_WIDTH = 500;   // in pixels 
const GWINDOW_HEIGHT = 300;  // in pixels 
const CIRCLE_RADIUS = 10;    // in pixels 
const STEP_TIME = 200;       // in milliseconds 
const MAX_LIFETIME = 3000;   // in milliseconds 
 
/* Derived Constants */ 
const CIRCLE_DIAMETER = 2 * CIRCLE_RADIUS;  
 
function RandomCircles() { 
 let gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT); 

let step = function() { 
let circle = createCircle(); 
 gw.add(circle); 
 let oneshot = function() { gw.remove(circle); }; 
 setTimeout(oneshot, MAX_LIFETIME); 
}; 
setInterval(step, STEP_TIME); 
let clickAction = function(e) { 
 let circle = gw.getElementAt(e.getX(), e.getY()); 
 if (circle === null) return; 
 if (circle.getColor() === "Green") circle.setColor("Yellow"); 
 else gw.remove(circle); 
} 
gw.addEventListener("click", clickAction); 

} 
 
function createCircle() { 

let cx = randomInteger(CIRCLE_RADIUS, GWINDOW_WIDTH - CIRCLE_RADIUS); 
let cy = randomInteger(CIRCLE_RADIUS,  
                   GWINDOW_HEIGHT - CIRCLE_RADIUS); 
let circle = GOval(cx - CIRCLE_RADIUS, cy - CIRCLE_RADIUS, 
                 CIRCLE_DIAMETER, CIRCLE_DIAMETER); 
circle.setFilled(true); 
circle.setColor("Green"); 
return circle; 

} 
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Solution 3: Strings (15 points) 
Implement the rotate function, which accepts a string (one you can assume is comprised 
of lowercase letters and nothing else) and returns a new string that’s the same as the 
original, save for the fact that all the vowels have been rotated. Restated, rotate returns 
a new string which is a replica of the original, except that the first vowel in the new string 
should be the second vowel of the original, the second vowel in the new string should be 
the third vowel of the original, and so forth. For completion, the last vowel of the new 
string should be equal to the first vowel of the original. So, for example, the vowel 
rotation of the word "illuminate" would be "ullimaneti", where you see that the i, u, 
i, a, and e have been replaced by u, i, a, e, and i, respectively.  If there’s only one instance 
of a vowel or there aren’t any vowels at all, then rotate should return just the same word. 
 
Here are some examples of how rotate operates: 
 

rotate("abbey") Þ "ebbay" 
rotate("seriously") Þ "sirouesly" 

rotate("embellishment") Þ "embilleshment" 
rotate("antithesis") Þ "intethisas" 

rotate("think") Þ "think" 
rotate("xyz") Þ "xyz" 

rotate("") Þ "" 
 
Use the next page to present your implementation of rotate.  Your solution should rely 
on the supplied findFirstVowel function, and you’re unlikely to need any JavaScript 
String methods other than substring. 
 
  

(space for the answer to problem #3 appears on the next page) 
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function isVowel(ch) { 
 return "aeiou".indexOf(ch) !== -1; 
} 
 
function findFirstVowel(str, start) { 
 if (start === undefined) start = 0; 
 for (let i = start; i < str.length; i++) { 
  if (isVowel(str.charAt(i))) { 
   return i; 
  } 
 } 
  
 return -1; 
} 
 
function rotate(str) { 
 let rotated = ""; 
 for (let i = 0; i < str.length; i++) { 
  let ch = str.charAt(i); 
  if (isVowel(ch)) { 
   let found = findFirstVowel(str, i + 1); 
   if (found !== -1) { 
    ch = str.charAt(found); 
   } else { 
    found = findFirstVowel(str); 
    ch = str.charAt(found); 
   } 
  } 
  rotated += ch; 
 } 
 return rotated; 
} 
  



  – 8 – 

Solution 4: Arrays (15 points) 
The look-and-say sequence is the sequence of numbers beginning as: 
 

 1 
 11 
 21 
 1211 
 111221 
 312211 
 13112221 

 
Each number in the sequence is generated by "reciting" its predecessor, and then 
capturing what was said in a number format that should be clear from the example below. 
 
Reciting 111221 out loud, you’d look and say: 3 ones, followed by 2 twos, followed by 1 
one, or 312211. Reading 312211 aloud, you’d say: 1 three, 1 one, 2 twos, 2 ones, or 
13112221.   
 
look-and-say arrays are similar, but numbers are instead expressed as arrays of isolated 
digits, as with [3, 1, 2, 2, 1, 1]. Reading the array aloud, you’d say 1 three, 1 one, 2 twos, 
2 ones, which we’d captured in array form as [1, 3, 1, 1, 2, 2, 2, 1]. 
 
For this problem, you’re to write the lookandsay function, which accepts an array of 
single digit numbers and generates its successor according to the look-and-say rules 
outlined here.  For example: 
 

lookandsay([3, 1, 2, 2, 1, 1]) returns [1, 3, 1, 1, 2, 2, 2, 1] 
lookandsay([1, 3, 1, 1, 2, 2, 1, 1]) returns [1, 1, 1, 3, 2, 1, 2, 2, 2, 1] 

 
 

Use the next page to present your implementation. You’re unlikely to need any JSArray 
directives other than the .length property and the push method.  
  

(space for the answer to problem #4 appears on the next page) 
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function lookandsay(arr) { 
 let result = []; 
 let pos = 0; 
 while (pos < arr.length) { 
  let count = 0; 
  while (pos + count < arr.length && arr[pos + count] === arr[pos]) 
       count++; 
  result.push(count); 
  result.push(arr[pos]); 
  pos += count; 
 } 
 return result; 
}  
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Solution 5: Working with data structures (15 points) 
By now, you’re all quite familiar with the game of Wordle, even if you’d somehow 
missed news of it prior to CS106AX’s Assignment 3. Of course, the goal is to uncover a 
secret word via a series of six or fewer educated guesses. With each guess, the game 
identifies correctly placed letters by coloring them green and further identifies correctly 
guessed but incorrectly placed letters by coloring them yellow. 
A JavaScript object modeling a large subset of all users and their game play for any given 
game might look like this: 

 
let today = { 
    secret: "phony", 
    users: [ { 

time: 74.1, 
guesses: ["slate", "pound", "prong", "phony"] 

      }, { 
time: 124.3, 
guesses: ["heart", "fishy", "money", "peony", "phony"] 

           }, 
     … many additional users 
      { 

time: 283.5, 
guesses: ["blast", "grime", "pluck", "poppy", "phone", "phony"] 

           }, 
          ] 
}; 

 
Our object contains the secret word and a large array of user objects, where each object 
stores the sequence of guesses that led them to a win or loss alongside the number of 
seconds it took that same user to enter their final guess. As you can see, the 0th user took 
74.1 seconds to work through their four guesses to ultimately match the secret word, 
whereas the last user took 283.5 seconds to work through all six guesses afforded them to 
win. Of course, it’s possible the user doesn’t win the game at all and that none of the 
words in the array match the secret one. 
For this problem, you’re to implement a statistics function, which accepts a 
JavaScript object like that structured above and returns a separate JavaScript object with 
two fields called average and histogram. The average field should store the 
average number of seconds it took to win the game (being careful to exclude those that 
didn’t win from the calculation), and the histogram field should store an array of 
length 7, where index 0 stores the number of users who failed to guess the secret word, 
but otherwise, index k stores the number of users who took precisely k guesses to win 
(e.g., index 3 should store the number of users who matched the secret word on the 3rd 
guess). 
Place your implementation of statistics on the next page. 
 
  

(space for the answer to problem #5 appears on the next page) 
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function statistics(info) { 
let stats = { 
 average: 0.0, 
 histogram: [0, 0, 0, 0, 0, 0, 0] 
}; 
 
let numWinners = 0, totalTime = 0; 
for (let i = 0; i < info.users.length; i++) { 
 let found = info.users[i].guesses.indexOf(info.secret); 
 stats.histogram[found + 1]++; // works even for found === -1! 
 if (found >= 0) { 
  numWinners++; 
  totalTime += info.users[i].time; 
 } 
} 
stats.average = totalTime/numWinners; 
return stats; 

} 
 


