
Jerry Cain Handout #18
CS 106AX November 8th, 2023

Section Handout #6

Problem 1: Rationals and Unit Fractions
For this problem, you may assume the Rational class we implemented in lecture has
been extended to provide getNumerator and getDenominator methods. Implement a
function called unitFractionSum, which accepts a Rational object called r—assumed
to be between 0 and 1—and returns a list of strictly decreasing unit fractions—that is,
fractions with a numerator of 1—whose sum is r. If r is already a unit fraction, then
unitFractionSum should just return the list [r]. Otherwise, compute the largest unit
fraction—we’ll call it u—that’s less than r and add u to a running list of unit fractions
that eventually add up to r. It’s an iterative process where you’re always computing the
largest unit fraction less than or equal to what’s left.

def unitFractionSum(r):
 """
 Constructs a list of distinct unit fraction
 that add up to the supplied r.

 Examples:
 unitFractionSum(Rational(1, 3)) -> [1/3]
 unitFractionSum(Rational(2, 3)) -> [1/2, 1/6]
 unitFractionSum(Rational(21, 23)) -> [1/2, 1/3, 1/13, 1/359, 1/644046]
 """

Now extend the above function to generate a sum of unit fractions (with minimum
denominator of 2) for any positive rational number whatsoever, ensuring that no
denominator gets used more than once.

def unitFractionSum(r):
 """
 Constructs a list of distinct unit fraction
 that add up to the supplied r.

 Examples:
 unitFractionSum(Rational(21, 23)) -> [1/2, 1/3, 1/13, 1/359, 1/644046]
 unitFractionSum(Rational(13, 12)) -> [1/2, 1/3, 1/4]
 unitFractionSum(Rational(5, 2)) ->
 [1/2, 1/3, ..17 terms.. ,1/7894115294, 1/333156570077494116352]
 """

 – 2 –

Problem 2: Defining and Implementing Classes
Tag clouds are data visualizations often used to convey information
about the most prominent words in a large data set (e.g., presidential
speeches, college admissions essays, New York Times news articles, or
leaked diplomatic cables). The most important, common, and impactful
words are typically drawn in larger fonts sizes, and less compelling
words, while important enough to be included, are drawn less
prominently in smaller font sizes.

Assume that a large subset of all U.S. Presidential speeches has been
parsed, and word tag data for all of those speeches has been compiled
and stored in a data file structured as follows:

Foundation of Government // title of first speech
1776-01-15 // date of first speech
affections #A19A7E 15 // first word, color, weight
agreeable #BBB6A2 15 // second word, color, weight
ambition #D9D6CB 13 // third word, color, weight
ammunition #CFCCBE 19
antiquity #8C8361 15
approve #D4D0C4 17
assembly #DFDCD3 47
// more tag entries
youth #DEDCD2 15 // last word, color, weight
 // blank line after all speeches, incl the last one
Importance of Property for the Suffrage // title of second speech
1776-05-2615 // date of second speech
accommodate #CECABC 19 // first word, color, weight
// more tag entries
wise #DFDCD3 17 // last word, color, weight. and so forth

Debate on Independence
1776-06-07
absolved #ADA78F 13
// more tag entries
volunteer #C7DED1 17

The first line of the data file contains the name of a speech, and the next line stores the date
the speech was delivered. Each line that follows contains three space-delimited tokens:
the word of prominence, the color that should be used to render the word in a tag cloud, and
the font size that should be used to render the word. The list of prominent words continues
until a blank line—literally the empty string—is encountered. The second speech appears
after this first blank line, and its data is catalogued in the same manner as the first. All speech
data is structured the same way, and even the last speech has a blank line marking the end of
its list of prominent words. You can assume the file, for any given speech, stores the words in
alphabetical order, and it’s perfectly formatted so there’s never any parsing drama.

 – 3 –

For this problem, you’re to provide the full implementation of the PresidentialWordCloud
class, whose constructor accepts the name of a valid, properly structured file and makes a
single pass through it to build an internal representation of the relevant data and configure the
object so it responds to two methods, which are:

• getAllWords, which accepts title and date strings as arguments and returns the
alphabetically sorted list of words that would contribute to that speech’s word cloud, and

• getAllTags, which accepts title, date, and size parameters and returns a list of
Python tuples, alphabetically sorted by word, for all tagged words in the speech
identified by the supplied title and date that should be rendered in the supplied font
size. Each tuple should be of length two: the 0th entry should be the word and the 1th
entry should be the color. For example, a call to cloud.getAllTags("Foundation
of Government", "1776-01-15", 15) would produce the following list as a
return value:

[
 ("affections", "#A19A7E"), ("agreeable", "#BBB6A2"),
 ("ambition", "#D9D6CB"), ("antiquity", "#8C8361"),
 // several similarly structured tuples omitted for brevity
 ("youth", "#DEDCD2")
]

The two methods shouldn’t need to do anything other than quickly lookup and return
information stored in dictionaries fully built by the constructor. Whenever the
speech/date and speech/date/size combinations can’t be found, you should return the
empty list.

