
 Jerry Cain  Handout #25 
 CS 106AX  December 1, 2023 

 Assignment #8: Flutterer 

 This assignment was developed by Ryan Eberhardt, Jonathan Kula, Esteban Rey, Suzanne Joh, and Anand Shankar 
 in 2019 when CS106AX was first offered.  Remember you’re permitted to work with partners on this assignment! 

 Due Date: Friday, December 8  th  , 5:00PM 

 Welcome to Flutterer! In this assignment, you will implement a small but 
 fully-functioning social network that emulates the design of (the admittedly 
 deteriorating) X, formerly known as Twitter. The home page displays a list 
 of posts—or rather,  floots  —made by yourself and friends  and allows you to 
 view and comment on them. As part of this, you’ll be implementing a server 
 to store and serve those floots to anyone who connects! 

 The hardest part of this assignment is less in the actual implementation and 
 more in the process of architecting the various parts into a fully integrated application. In 
 particular, this is the first program you’ll have worked on that makes use of many separate files 
 at once. In fact, Flutterer is implemented across  fourteen  different files: eight Python files on the 
 backend (aka server-side), and six Javascript files on the frontend (aka client-side), all working 
 in cooperation to present the user experience that is Flutterer.  Don’t worry about the size of the 
 code base or even the size of this handout, as much of it is code we’ve already written to support 
 you as you complete the assignment. On the backend, you’ll need to implement one Python file, 
 and read two or three others to understand how they work. On the frontend, you’ll need to 
 implement very small code segments across 5 JavaScript files. 

 When Flutterer is complete, you’ll have implemented a full-stack application that is capable of: 

 ●  Displaying a list of floots to any computer, 
 anywhere in the world 

 ●  Displaying comments on individual floots 
 ●  Allowing multiple users to post floots to 

 the website that are later seen by everyone 
 ●  Allowing multiple users to comment on any 

 floot 
 ●  Displaying all the above via an attractive, 

 relatively modern UI 

 That may not seem like a lot at first glance, but 
 hiding behind each of those elements are the complexities of 



 server-client interaction and dynamic content retrieval and modification. By the end of this 
 assignment, you will have implemented something most likely unprecedented in an introductory 
 computer science class, and something to be really proud of!  

 If you’d like to go beyond the functionality above, Flutterer provides ample opportunity for 
 extensions.  We’ve detailed some ideas for extensions at the bottom of this handout. What’s 
 more? The best submission (as decided by Jerry, Avi, and the section leaders) will be treated as a 
 contest winner. That means your lowest assignment, midterm, or final exam grade will be 
 dropped and replaced with a 100%. 

 Logistics 

 Taking one late day will extend the deadline to Monday, 12/11 at 5:00PM, and a second late day 
 will extend the deadline to Wednesday, 12/13 at 5:00PM.  No submissions will be accepted past 
 Wednesday, 12/13 at 5:00PM. 

 Remember that you may work with a partner for this assignment. You should only submit one 
 copy of the assignment and email the section leaders of each mentioning you worked together 
 once one of the two of you submits. 

 Part 1: Implementing the Server in Python 

 For the first part of this assignment, we will focus on implementing a  server  . A server is a 
 computer program that provides services—get it?—for other programs (called  clients  ) over the 
 Internet. In our case, the clients are web browsers (like Google Chrome) running the Javascript 
 you will write in Part 2. The server maintains a database of floots and comments, and the client 
 can ask the server to do things like create new floots, add comments, delete floots, and so on. 
 Multiple clients can interact with the same server, so if one client asks the server to create a floot 
 and then a different client asks the server for a list of all floots (for the purposes of populating its 
 news feed), the second client will see the floot that the first client created (even though the two 
 clients have no direct contact with each other). 

 The client and server communicate with each other via a specification called an  API  . The API 
 specifies, in very clear terms, how the client and server should interact so that the server can 
 understand what the client is asking it, and so the client can understand the server's responses. It 
 defines a series of  endpoints  , where each endpoint  corresponds to something the client might ask 
 the server to do. For example, if the client wants to retrieve a list of all floots, it can send a 
 request to the  GET  /api/floots  endpoint. If it wants  to delete a floot, it can send a request to the 
 POST  /api/floots/{flootId}/delete  endpoint. For each  endpoint, the API specifies what 
 information the client needs to send in its request, and it specifies what the server's response 
 should look like. For example, our API says that a client sending a request to  POST  /api/floots 
 (an endpoint that creates new floots) needs to include the content of the floot, as well as the 



 username of the person posting. A server response to that request should contain a 
 JSON-formatted string that includes a variety of information about the newly-created floot. 

 The full list of Flutterer API endpoints is described in the  API overview  section below. For now, 
 don't worry about understanding all the API endpoints. Just focus on understanding the general 
 ideas involved in this client-server communication. 

 You may remember learning about the HTTP protocol in lecture, along with various details such 
 as how paths are specified, how headers are sent, and so on. For this assignment, you need to 
 have an understanding of what is happening behind the scenes, but those details have already 
 been handled for you. Your primary job is to write a handful of functions that implement the 
 functionality of the Flutterer API endpoints. This work will be described more concretely in the 
 next few sections. 

 Summary of starter code 

 Understanding and then modifying a large codebase can be intimidating, so we’ll take some 
 space here to explore Flutterer’s files together. Although not all files need to be modified or even 
 read, we still recommend looking through them. They can give you examples of what good 
 decomposition looks like and catalyze an interest in Python concepts we haven’t had the time to 
 explore! 

 You will  not  need to modify the following files, but  you will need to use the classes they define. 
 You should take a look at the public methods (i.e., the ones that don't start with an underscore), 
 read the documentation, and understand how they work. You don't need to read or understand the 
 actual code in these files, although you are certainly encouraged to if you have the time. 

 ●  server/database.py  defines a  Database  class that you  will use to store information in 
 your server so that the information persists, even if you restart the server or reboot your 
 computer. There is a handy table describing all of the methods at the end of this handout 
 (see Appendix), which you can print out as a quick reference if you'd like. 

 ●  server/floot.py  defines a  Floot  class that you will  need to use when interacting with 
 the  Database  . This class is also described in the  Appendix. 

 ●  server/floot_comment.py  defines a  FlootComment  class  that you will also need to use 
 when interacting with the  Database  . 

 ●  server/error.py  is very short and defines an  HTTPError  class that you can use to 
 notify the client of any errors you encounter. 

 There are a few more files that are worth noting: 

 ●  server/data.json  stores all of the information that  has been saved to your  Database  . If 
 you ever want to clear your database to start afresh, you can delete the file. (Other than 



 that, you won't need to interact with this file directly, as it's managed for you inside the 
 Database  .) 

 ●  server/test_api.py  contains a series of tests you  can use to ensure your code has been 
 implemented correctly. You don't need to read or understand this file, but you will need to 
 run it. This is covered in the  Testing your server  section. (Don't worry about it for now.) 

 ●  run_server.py  launches a web server that accepts HTTP  requests and runs your code to 
 service API requests. Much of this code is complicated, but you don't need to read or 
 understand it.  You will, however, need to run this script starting in Part 2 (when you 
 work on implementing the client). 

 ●  server/serve.py  contains the core implementation of  our HTTP server. You can read it 
 if you're curious, but you don't need to read or understand anything here. 

 Lastly, note that  server/api.py  is the only backend  file you’ll be modifying. This file 
 implements the responses to the various API endpoints defined in the API docs (described 
 below). 

 How  api.py  works 

 Let's walk through  server/api.py  together, since this  is where you will be doing the bulk of 
 your work.  Open the file in PyCharm, and you will see a number of functions with  #  TODO 
 comments in them.  These are the functions you need to implement for this first portion of the 
 assignment. At the bottom of the file, you will find this code: 

 GET_ROUTES = [ 
 ("/api/floots", get_floots), 
 (("/api/floots/(.*)", "floot_id"), get_floot), 
 (("/api/floots/(.*?)/comments", "floot_id"), get_comments), 
 (("(/.*)", "path"), serve_file), 

 ] 

 POST_ROUTES = [ 
 (("/api/floots"), create_floot), 
 (("/api/floots/(.*?)/comments", "floot_id"), create_comment), 
 < 4 more routes omitted for brevity... > 

 ] 

 These two variables define the API endpoints for Flutterer. The first line in  GET_ROUTES  defines 
 the  GET  /api/floots  endpoint, and tells the server  that the  get_floots  function should be 
 called whenever a client makes a request to that endpoint. The second line is a bit more 
 complicated; it defines an endpoint that has a  path  parameter  . If the client sends a request to the 
 server for any URL matching the form  /api/floots/{  some  string  }  (e.g.  /api/floots/abc  or 
 /api/floots/123  ), our server code will extract the  {  some string  }  part from the requested URL 
 (e.g.  abc  or  123  ) and pass the extracted string as  the  floot_id  parameter to the  get_floot 
 function. For this reason, do not change the parameter names in the API functions! (Or, if you 



 update the parameter names, be sure to update the corresponding parameter names in 
 GET_ROUTES  and  POST_ROUTES  .) 

 The endpoints defined in  POST_ROUTES  work the same  way, with one twist:  POST  requests 
 generally involve the client uploading some data to the server.  For example, the  POST 
 /api/floots  endpoint (for creating new floots) requires  that the client upload the contents of the 
 floot as part of the request body. Our server code takes the request body that was received from 
 the client, parses it into a dictionary (since it is sent from the client to the server as a string), and 
 passes that dictionary to the specified API function as the  request_body  parameter. For this 
 reason, every API function that is mentioned in  POST_ROUTES  has a  request_body  parameter. To 
 give a concrete example, see the  delete_floot  function.  The  floot_id  parameter comes from 
 the path parameter (as specified in  POST_ROUTES  ),  and the  request_body  parameter is a 
 dictionary that comes from the request body sent by the client. 

 Your job is to implement the remaining API functions marked with  TODO  comments. As 
 mentioned, these functions accept parameters based on the path parameters and request body; 
 they should return a list or a dictionary, which gets converted to a JSON string by our server 
 code. In some cases, you may want to return an  HTTPError  to the client to indicate that 
 something has gone wrong. For example, in  get_floot  ,  you may be asked by the client to look 
 up information about a particular floot. However, if the specified  floot_id  does not match that 
 of any floot in the database, you should inform the client of the error by returning 

 HTTPError(404, "no floot with ID " + floot_id  + " could be found")  . 

 Finally, as a last note, observe that a  Database  object  has been created for you at the top of 
 api.py  : 

 db = Database() 

 You will need to use this  Database  object to get floots  from the database, create new floots, and 
 so on. You should read through the comments in  database.py  to see how to use this object, and 
 there is also a quick reference at the very end of this handout, in the Appendix. 

 Testing your server 

 Your API functions are executed whenever a client makes a request to an API endpoint. 
 However, you haven't implemented any client yet! So how are you supposed to test your API 
 code? 

 To solve this issue and to make your life simpler, we have provided a series of tests you can run 
 to verify that your functions work correctly.  These tests are fairly comprehensive, so, provided 
 you haven't done anything especially bizarre,  passing  all the tests means you should get 100% 
 functionality for the server portion of this assignment.  Hopefully, in addition to giving you 



 some confidence for your functionality grade, these tests will allow you to focus on 
 implementing the client in Part 2 without needing to worry about possible bugs in your server 
 code. 

 To run tests, open the  server/test_api.py  file, scroll  to the bottom of the file, and click the 
 "play" button to the left of  if __name__ == "__main__"  : 

 (Once you have done this at least once, you should also be able to launch the tests from the 
 upper-right corner of PyCharm.) 

 This will run the entire test suite (21 tests) and report any errors it finds. PyCharm will show you 
 the output like so: 

 Click the arrows to see the list of individual tests, then click on a particular test to see why it 
 failed. 

 This is what a failure looks like: 



 At the top, you’ll see an error message that describes what we expected, and what your code did; 
 then, it will summarize the difference. Read the last line first: In this case,  api.create_floot 
 was supposed to return a dictionary, but instead it returned an  HTTPError  . If your code outright 
 crashes (instead of doing the wrong thing), the test failure will instead look like this: 

 In this case, you can read the stack trace from the bottom up to find where the error in your code 
 occurred. (Here, we raised an  Exception  to induce  an artificial crash for demo purposes.) 

 The tests are written in the same order as the things they exercise in  api.py  , so you can 
 implement one function and then go to  test_api.py  and run the tests for just that function. You 
 can execute a single test by clicking the "play" button to the left of the test: 



 Recommendations for completing the assignment 

 Our biggest recommendation for this part of the assignment is to  implement one API endpoint, 
 test it, and only move to the next endpoint once the previous one functions correctly.  Do  not 
 implement all of the endpoints and then try testing things out all at once; your code will likely be 
 broken, and it will take a lot longer to fix everything. We have given you the tests to make it easy 
 to spot bugs early on, so please use them. 

 In addition, please reach out if you have questions about what's going on in this assignment. This 
 assignment doesn't require you to write much code, but it’s conceptually dense, and we want to 
 make sure you understand how all the pieces work together. 

 API Overview 

 The server you will implement provides persistent, shared data storage of floots (which are like 
 Twitter posts). Floots have information like the content of a message and who posted it, and are 
 identified by a unique  id  , which looks like this: 

 cace4adc-34b9-49dd-90cd-32f552b7b72f 

 Every floot will have its own unique  id  , which can  be used to identify a particular floot among 
 many. Don’t worry about generating this  id  ; our starter  code will take care of that for you. 

 Of course, this isn’t all. Just as tweets can have replies, floots come with comments. Comments 
 are linked to a particular floot (a-la Facebook, Instagram, TikTok, etc.) and are identified by both 
 the floot they’re attached to  and  by a separate unique  id  that takes the same format as above. 

 The API you need to implement is specified here:  https://bit.ly/37wtWM7  .  This is industry-grade 
 API documentation, and if you ever work with an API from Google, Facebook, Slack, or some 
 other company, you will probably read similar documentation. In addition, we have written up a 
 table with the most important information that you can print out and refer to if you'd like. This 
 table is at the very end of this handout, in the Appendix. 

 Part 2: Implementing the Client in JavaScript 

 Now that you have a functioning server that is capable of storing data for multiple users, let's 
 build the frontend of the website to interact with it! 

 Components 

 Before we begin talking about the code, it is important to discuss how the code is organized, as 
 well as why it is organized the way it is.. 



 Modern websites are  huge  ; my Facebook home page has 4,338 DOM nodes, and the Google 
 Docs document I am currently typing in has 6,883. That's a  lot  of elements, and we need some 
 way to manage the complexity that comes with it. 

 One way to manage the complexity is to organize DOM nodes into  components  . For example, 
 say these are the DOM nodes needed to display a floot "card" on the screen, including the 
 author's profile photo, the author's name, the contents of the floot, a "like" count, and a "number 
 of comments" count: 

 We can group these nodes into logical "components": 

 Then, we can implement each component as a simple function that takes some parameters (e.g., 
 ProfilePicture  would need to know the username of  the floot's author) and generates the 
 DOM nodes that would be needed to add that component to the page. As a concrete example, we 
 have implemented a  ProfilePicture  component that looks  like this: 

 function ProfilePicture(name, imageUrl) { 
 let image = document.createElement("img"); 
 image.src = imageUrl; 
 image.className = "user-photo"; 
 image.alt = "User Profile Image for " + name; 
 return image; 

 } 

 Then, using smaller components, building big components (like the floot as shown in the two 
 pictures above) becomes much simpler: 

 function Floot(floot, loggedInUser, actions) { 
 let card = document.createElement("div"); 



 card.classList.add("card"); 
 card.classList.add("floot-card"); 
 card.appendChild(ProfilePicture(floot.username, 

 "img/" + floot.username + ".jpg")); 
 card.appendChild(FlootContent(floot.username, floot.message)); 
 card.appendChild(LikeCommentCount(floot, loggedInUser, toggleLike)); 
 return card; 

 } 

 All of the DOM generation for this assignment is structured in terms of components. Throughout 
 the rest of this handout, we will use the term "component" extensively, but it's important to 
 remember that a component is  just a normal function  that takes some parameters and returns a 
 DOM node as output. 

 Starting the server 

 Launch the server by opening  run_server.py  in PyCharm,  scrolling to the bottom, and pressing 
 the green "play" button to the left of  if __name__  == "__main__"  : 

 This will run the server and, upon any Python file change, will automatically restart the server so 
 you’re working with the latest version of your code. (You shouldn't need to make any changes to 
 your Python code in this part of the assignment, but this will be useful if you want to implement 
 an extension.) To exit, press the stop button. 

 Once the server is running, you can connect to it by going to  http://localhost:1066/  in your web 
 browser, all ready to go! When you make changes to your JavaScript/HTML/CSS files, changes 
 will be reflected automatically – just refresh your browser! There’s no need to restart the server. 

 You may run into an error that complains about “address already in use” or an “error binding port 
 1066” when running the server. This probably means the server is already running somewhere 
 else (maybe another PyCharm  Run  tab). If it’s not  or you can’t get it to work, you can edit the 



 SERVER_PORT  constant in  server/serve.py  and change it to a different number between 1025 
 and 65534. 

 Note that unlike previous assignments where you could double-click index.html to run your 
 Javascript,  you must launch the website by going to  http://localhost:1066/  !  If you open the 
 website by double-clicking index.html, things might appear to work at first, but you will run into 
 problems making  AsyncRequest  s. (If you try making  an  AsyncRequest  for  /api/floots  after 
 opening  index.html  directly, the browser will try  looking for the file  /api/floots  on your 
 computer instead of sending a request to your Python server.) 

 Milestone 1: Read the starter code 

 First, take some time to familiarize yourself with the code that has been provided to you. We 
 wanted to give you a real-world problem for this assignment, but building web applications often 
 involves a significant amount of tedious work (e.g. basic DOM manipulation) that we didn't feel 
 was worth your time in Week 10. We have implemented most of the tedious work for you, we 
 promise.  While you don't need to understand how all of it works, you should skim the files to 
 see what code we have already implemented and how to use it. 

 The following notable files are provided for you: 

 ●  client/index.html  : This is the HTML file that browsers  first read when they are 
 loading Flutterer. You might notice that there is very little in this file, as the entire page is 
 dynamically generated from JavaScript. You won't need to touch this file for this 
 assignment; you’ll manipulate the HTML by using JavaScript to manipulate the DOM. 

 ●  client/style.css  : This file contains the CSS for Flutterer.  There is quite a lot of CSS 
 involved, and we have no expectation that you understand how it works. Feel free to skim 
 this file if you are curious, but you don't need to do anything with this file for the 
 purposes of this assignment. 

 ●  client/img/  : This directory contains all the images  that Flutterer can load. You’re free 
 to peruse these images, or to add your own! If you want to change the names of the users 
 that show up in Flutterer, you can add new profile pictures in this directory. Just be sure 
 for the name of your image file, that it matches your new username and replace any 
 spaces with  %20  . 

 ●  client/js/flutterer.js  : This is where you will need  to write most of your code. The 
 Flutterer  function is called when the HTML file first  loads. You will need to extend 
 this and implement  MainComponent  to generate the contents  of the page. 

 ●  client/js/sidebar_components.js  : This file contains  the  Sidebar  ,  FluttererLogo  , 
 and  AccountSelector  components, which make up the  left side of the screen in the 
 finished product. These components are fully implemented, and you won't need to change 
 anything here except for one line in  AccountSelector  .  You will need to use this code in 
 Milestone 2. 



 ●  client/js/floot_components.js  : This file contains components making up the right 
 side of the screen:  NewsFeed  ,  NewFlootEntry  ,  FlootList  ,  Floot  , and a few other small 
 components.  NewsFeed  generates the entire right side  of the screen via  NewFlootEntry 
 (the text box and submit button at the top of the screen that allow you to create a new 
 floot) and  FlootList  (as you might expect, a list  of  Floot  s). These components are 
 mostly fully implemented, although you will need to make a few one-line changes for 
 Milestones 5-7. 

 ●  client/js/comment_components.js  : This file contains  components making up the 
 display and entry of comments on a floot:  NewCommentEntry  ,  CommentList  ,  Comment  , 
 and  CommentContent  . Like  floot_components.js  , these  components are mostly fully 
 implemented. You’ll have to make a few one-line changes for Milestones 8 and 9. 

 ●  client/js/modal_components.js  : This file contains  the single  FlootModal 
 component. A modal is a window-in-a-window; an example of this is the Google Docs 
 “share” screen (“share” modal). In Flutterer, the  FlootModal  is responsible for displaying 
 the details of a floot, including that floot’s comments. The  FlootModal  is already 
 implemented, but you’ll have to make a couple changes for Milestone 7. 

 ●  client/js/general_components.js  : This file contains  several components used 
 throughout the rest of Flutterer, including the  ProfilePicture  ,  CommentCount  , and 
 DeleteButton  components, among others. These are already  fully implemented for you. 

 Milestone 2: Display the basic interface 

 In this milestone, you'll implement your first component! In fact, it is the only component that 
 we are requiring you to implement on your own. Make sure that you have read the earlier section 
 called  Components  . 

 You should first implement  MainComponent  , which generates  the nodes needed to show the 
 entire page. To keep things simple starting out, we'll just generate a container  div  with the class 
 primary-container  that contains a  Sidebar  and a  NewsFeed  .  First, create a  div  node using 
 document.createElement()  . Add the  primary-container  class to the  div  , so that it is styled 
 properly using our provided CSS styles. Then, call the  Sidebar  and  NewsFeed  functions, each of 
 which return a DOM node you can add to your  div  by  calling  container  .appendChild(  sidebar 
 or news feed node  )  . (You may want to use the  USERS  constant when calling  Sidebar  .) Finally, 
 return the container  div  . 

 If you would like a reference for implementing  MainComponent  ,  take a look at  Sidebar  in 
 sidebar_components.js  . The two functions are very  similar. 

 Once you have done this, update the  Flutterer  function  to display  MainComponent  on the page: 

 document.body.appendChild(MainComponent(  selected user  ,  floots  ,  actions  )); 



 For now, when calling  MainComponent  , you can pass  USERS[0]  as the selected user,  []  as the list 
 of floots, and  {}  as the actions aggregate. We will explain these parameters in milestones 3 and 
 4, and we can pass better values then. 

 At the end of this milestone, the left sidebar should appear with the first user highlighted, and the 
 right side of the screen should be populated with a text box that allows you to enter a floot: 

 This is an exciting result to get for writing less than 20 lines of code! However, it's not magic: As 
 you should have seen in Milestone 1,  Sidebar  ,  NewsFeed  ,  and the components they depend on 
 are simply doing a lot of mundane DOM manipulation similar to what you did in Assignment 7. 
 CSS is being used to make the page look pretty. You should have a good sense of how everything 
 on this page is working. Hopefully, you feel like you could use the same techniques to implement 
 a different kind of web application without our scaffolding, if given sufficient time. 

 Be sure that your code generates the above web page before moving on to the next milestone. 

 Milestone 3: Load the news feed 

 In Milestone 2, you passed the empty array (  []  ) as  the list of floots to  MainComponent  . Let's pass 
 in something real! For this milestone, we will add code to  Flutterer  to load the list of floots 
 from the  /api/floots  API endpoint that you implemented  in the first half of this assignment; 
 then, we will pass this to  MainComponent  . 

 Modify the  Flutterer  function to create and send an  AsyncRequest  to  /api/floots  , following 
 lecture and section examples for making asynchronous requests. When the request is completed 
 and the response comes back from the server, use  JSON.parse()  to convert the string returned 
 from  response  .getPayload()  into an array of aggregates.  Pass that array to  MainComponent  to 
 display the floots returned from the server. 



 If you run into errors in sending the  AsyncRequest  , make sure you are loading the website 
 through  http://localhost:1066/  as described earlier  in  Starting the server  . 

 When you are finished, you should see a list of demo floots displayed nicely on the screen: 

 Again, this leverages a lot of existing code we wrote for you in  floot_components.js  , but there 
 are no new concepts in how these DOM nodes are generated, and you should have a good sense 
 of how everything is working. 

 Milestone 4: Implement user switching 

 This looks great so far! However, clicking different names in the "Log in as" sidebar has no 
 effect. Let's fix that. 

 Remember that components are simply functions that take some parameters and return DOM 
 nodes that can be shown on the page. The  selectedUser  parameter passed to  MainComponent 
 determines which user is highlighted in the left sidebar and which profile picture appears to the 
 left of the "What's fluttering?" text box in the top right of the page. As such, if we want to change 
 which user is shown as being logged in, one way to do so is to delete all the elements on the page 
 (i.e. remove all the children of  document.body  ), and  then reconstruct the page by passing a 
 different  selectedUser  to  MainComponent  and displaying  the returned elements (by appending 
 the returned DOM node to  document.body  as you did  in Milestone 2). This process of "clear the 
 screen, regenerate the page, and display it again" happens so fast that the user can't perceive 
 anything was deleted. The only changes they can see to the screen are that the highlighted user 
 and "What's flooting?" profile picture have changed. 

 Side note: This "let's destroy everything and regenerate everything from scratch" approach might 
 feel lazy and inefficient to you, and I would agree. However, modern web applications are so 
 complicated and have so many things on the page that handling updates to the page in the most 
 efficient way tends to yield extremely complicated code. Tools have been developed over the last 



 10 years to make this "functional" paradigm ("given some inputs, generate the output DOM from 
 scratch") more efficient so that we can spend more time writing simple functions and less time 
 debugging really complicated code. 

 To implement this approach, define a function inside  Flutterer  that should be called when 
 someone selects a different user to log in as. (You could also define this function as a top-level 
 function, but it will be much easier to define it as a closure function inside  Flutterer  .) This 
 function should take one parameter (the name of the user being switched to), and it should: 

 ●  Clear anything being currently shown on the page: 
 while (document.body.lastChild != null) { 

 document.body.removeChild(document.body.lastChild) 
 } 

 ●  Generate a new tree of DOM nodes by calling  MainComponent  with the new username 
 ●  Show the new nodes using  document.body.appendChild() 

 You will need to define a top-level variable inside the  Flutterer  function that stores the list of 
 floots retrieved from the server in Milestone 3. Otherwise, you won't have a good value to pass 
 as the  floots  parameter to  MainComponent  . 

 Once you have done this, the only task that remains is to call this function when one of the users 
 is clicked in the left sidebar. We have installed a click-handling function on each sidebar button 
 (see  buttonClicked  inside of  AccountSelector  in  sidebar_components.js  ).  You only need 
 to add a single line of code, calling the function you wrote inside buttonClicked. However, this is 
 easier said than done; the function you wrote is a (hopefully) a closure function inside 
 Flutterer  , and it isn't accessible from inside  AccountSelector  . 

 To solve this problem, we have included an  actions  parameter in several of the components. 
 This aggregate is intended to contain functions that small components (like  AccountSelector  ) 
 can use to send information up to  Flutterer  , and so  that  Flutterer  can re-render the page with 
 updated information. Inside  Flutterer  , put your function  inside of an  actions  aggregate: 

 let actions = { 
 changeSelectedUser: function(username) { 

 // your code here 
 }, 

 }; 

 Pass this aggregate as the third argument to  MainComponent  (instead of passing  {}  , as you did in 
 Milestone 2). Then, you should be able to access this function inside of  buttonClicked  in 
 AccountSelector  . (You can verify this by doing  console.log(actions);  in  buttonClicked  .) 
 The function can be retrieved as  actions.changeSelectedUser  ,  so you can call it and pass the 
 clicked username by calling  actions.changeSelectedUser(username)  . 



 By the end of this milestone, you should be able to click different users in the left sidebar. The 
 sidebar should update to reflect the selected user, and the profile picture to the left of the "What's 
 fluttering?" text box should also update. 

 Milestone 5: Post new floots 

 In the first half of this assignment, you implemented a  POST /api/floots  API endpoint that 
 allows the client to add new floots to the database. For this milestone, when the "Floot" button is 
 clicked, you should make an  AsyncRequest  to that endpoint;  then, make another  AsyncRequest 
 to  GET /api/floots  to get an updated list of floots  (including the one that was just created). 
 Use this updated list to create a new MainComponent and update the user’s view. 

 Let's walk through all of that step by step. First, in  Flutterer  , add another function to the 
 actions  aggregate that takes the contents of the floot  (as a string) as the  message  parameter. For 
 now, just put a  console.log()  call inside the function  so that we can see that it's being called: 

 let actions = { 
 changeSelectedUser: /* code from Milestone 4 */, 
 createFloot: function(message) { 

 console.log("actions.createFloot was called, message:", message); 
 }, 

 }; 

 Then, let's wire up the code so that function gets called when the "Floot" button is clicked. Have 
 a look at the  NewFlootEntry  component inside  floot_component.js  .  This component creates 
 the "What's fluttering?" text box, as well as the "Floot" button that submits the floot. When the 
 "Floot" button is clicked, the  postFloot  function  is called. You can access the  createFloot 
 function you just created via the  actions  aggregate.  Add a line to  postFloot  to call that 
 function, passing it  textbox.value  (i.e. the contents  of the "What's fluttering?" text box). 

 At this point, you should be able to type some text into the "What's fluttering?" text box, click 
 the "Floot" button, and see that text appear in your browser console. (Try it out, and make sure 
 everything is working. If it doesn't work,  console.log  the  actions  object at various points to 
 make sure  actions.createFloot  is being passed properly.) 

 Next, add to your  actions.createFloot  function so  that it sends an  AsyncRequest  to 
 /api/floots  using the  POST  method. When you are creating  the  AsyncRequest  , you will need 
 to call  request  .setMethod("POST");  to make sure the  POST  method is used. If you don't do this, 
 the server will think you are trying to  GET  a list  of floots, and it will send you back a list of all 
 floots (without creating any new floot). Then, you will need to call  request  .setPayload(  request 
 body  );  in order to specify the data for the request  (i.e. the  username  and  message  ). Note that 
 setPayload  's request body parameter takes a string,  not  an object, so you will need to use 
 JSON.stringify()  to convert an aggregate/dictionary  to a string that can be sent to the server: 



 request.setPayload(JSON.stringify({ 
 username:  username  , 
 message:  message  , 

 })); 

 When the request finishes (i.e. the callback passed to  request.setSuccessHandler(  callback  ) 
 is called), that means the server has saved the new floot. (You should be able to manually refresh 
 the page and see the floot appear.) In the success handler, you should load an updated list of 
 floots (i.e. make another  AsyncRequest  to  GET /api/floots  ),  and when that second request 
 succeeds, you should reconstruct  MainComponent  to  re-render the page with the updated list of 
 floots. Throughout this process, try to find ways to consolidate your code with the code you 
 wrote for Milestone 3 (loading and displaying the news feed) and Milestone 4 (re-rendering the 
 page by creating a new  MainComponent  ). Our solution  decomposes into three functions: 

 ●  A function that loads the list of floots from the server (  GET /api/floots  ). This function 
 is called on initial load and whenever a new floot is posted (and it is also called several 
 times for the later milestones). 

 ●  A function that serves as the  AsyncRequest  success  handler for the previous function 
 (i.e. is called whenever the server responds to  GET  /api/floots  ). This function extracts 
 the list of floots from the server's response. 

 ●  A function that re-renders the  MainComponent  (i.e.  clears everything in  document.body 
 and then adds a new  MainComponent  ). This is called  from the previous function (i.e. 
 when the server responds with an updated list of floots), but it is also called when the 
 logged-in user is changed, and it is called again in Milestone 7. 

 You can decompose your code any way that makes the most sense to you; we are only providing 
 this as a reference. 

 Note that this code is pretty conceptually complicated. This is probably the first time you're 
 working with chains of 3 callback functions, so there is a lot to think about. If things don't work, 
 add gratuitous  console.log()  statements to try to  build an intuition for what your program is 
 doing and where it might be deviating from what you expect. 

 Milestone 6: Delete floots 

 Next, we’ll be giving your users the opportunity to do something seldom allowed by today’s 
 social networks: deleting content! You’ll notice that your Floots already show a trash can icon on 
 deletable floots (i.e. floots that were posted by the currently logged-in user). Your job is to 
 connect this trash can to the action of deleting a Floot, which you implemented in the  POST 
 /api/floots/{id}/delete  API endpoint on the server.  This is extremely similar to the work 
 you did in Milestone 5. To get you started, here are some concrete things you'll need to do: 

 ●  Add another function to  actions  that can be called  to delete a floot. 



 ●  Call this function from inside the  deleteFloot  event handler in the  Floot  component 
 (  floot_components.js  ). 

 ●  In your function, make a  POST  request to  /api/floots/{id}/delete  .  Note that this 
 endpoint takes a  path parameter  (the ID of the floot  you're trying to delete). Make sure 
 you don't do  let request = AsyncRequest("/api/floots/{id}/delete")  ;  you need 
 to build up a target URL string that substitutes  {id}  out for the appropriate floot ID. 
 Fortunately, the floot ID is embedded in the  flootInfo  parameter passed to the  Floot 
 component function. 

 ●  When that request succeeds, refresh the display so that the deleted floot disappears, just 
 like you did in the previous milestone. Make sure to decompose your code well, since 
 this does the exact same thing as Milestone 5. 

 Milestone 7: Show comments in a FlootModal 

 When the user clicks on a floot, a  modal  (kind of 
 like a friendly, in-page popup window) appears, 
 displaying the floot's comments and allowing the 
 user to add a new one. We have already 
 implemented the components necessary to create 
 the modal, so your job is to make it appear when a 
 floot is clicked. 

 To make a modal appear on the page, you can 
 modify  MainComponent  to create a  FlootModal 
 (  FlootModal  is defined in the file 
 modal_components.js  ): 

 main component container  .appendChild( 
 FlootModal(  floot object  ,  logged-in username  , actions)); 

 Of course, you only want to show a modal if the user has clicked a floot. Somehow, you need to 
 indicate to  MainComponent  whether or not a floot has  been clicked, so that it can decide whether 
 or not to create a  FlootModal  . If a floot has been  clicked, you also need to provide that floot 
 object to  MainComponent  so that it can be passed to  FlootModal  (so that the floot's comments 
 can be displayed). 

 To address this, we recommend adding a  selectedFloot  parameter to  MainComponent 
 containing  null  if no floot has been clicked, or a  floot object if the modal should be displayed. 
 You can then change your implementation of  MainComponent  to include a  FlootModal  if 
 selectedFloot  is not  null  . 



 Once this is done, you need to update  Flutterer  so that it passes a meaningful value to 
 MainComponent  for this new parameter. You should add  two new functions to  actions  : 

 let actions = { 
 // Earlier code here... 
 openFlootInModal: function(flootObject) { 

 // Re-render the page, passing flootObject to MainComponent 
 }, 
 closeModal: function() { 

 // Re-render the page, passing null as the selectedFloot parameter 
 // to MainComponent 

 }, 
 } 

 Then, wire up the rest of the code so that the modal opens/closes appropriately: 

 ●  In the  handleCardClick()  function of the  Floot  component  (  floot_components.js  ), 
 call  actions.openFlootInModal  to display the given  floot. 

 ●  In the  FlootModal  component (  modal_components.js  ),  after the code that creates 
 closeBtn  , add an event listener to  closeBtn  that calls  actions.closeModal  on  click  . 

 ●  Also in the  FlootModal  component, towards the very  end of the function (the part that 
 calls  modal.addEventListener  ), add a line that calls  actions.closeModal()  . This will 
 close the modal if the user clicks outside the modal. 

 Milestone 8: Create and delete comments 

 For the last piece of functionality, you will add the ability to add and remove comments to floots. 
 This is similar to the work you completed for Milestones 5 and 6. 

 ●  You need to add functions to  actions  that make  POST  requests to 
 /api/floots/{flootId}/comments  (to create a comment),  in addition to 
 /api/floots/{flootId}/comments/{commentId}/delete  (to delete a comment). 
 When these requests succeed, reload the list of floots from the server and re-render the 
 page. When re-rendering the page, make sure that you also update the  selectedFloot 
 object being passed to MainComponent. If you don't do this, the modal won't update to 
 show the updated list of comments after a user adds a comment, so it will look like 
 commenting isn't working (even though the new comments are being successfully sent to 
 the server). 

 ●  In the  NewCommentEntry  component (  comment_components.js  ),  you will need to 
 change  submitComment  to call your comment-creating  function in  actions  . 

 ●  In the  Comment  component (also  comment_components.js  ),  you will need to change 
 deleteComment  to call your comment-deleting function  in  actions  . 

 Congratulations! You're done! 



 General advice 

 You don't need to write much code for this part of the assignment, but the code you do write can 
 be pretty complicated. We strongly recommend adding  console.log()  statements throughout so 
 that when things go wrong, you can get a better sense of what your program is doing. However, 
 we would like to add two caveats: 

 ●  Make your  console.log  statements  descriptive.  If you  have too many  console.log 
 calls, and the messages printed don't explain what they are printing, you will have a hard 
 time interpreting the output. 

 ●  Please remove extra  console.log  statements before  submitting your assignment. (It's not 
 a big deal if you forget, but removing them makes grading easier.) 

 Conclusion 

 By the end of this assignment, you should have a minimal but fully-functioning social network 
 site! You can even use the site from other computers (including your phone). Try identifying 
 your local IP address (  Mac  ,  Windows  ). Pretend your  IP address is 12.34.100.200; then, if you 
 have another computer connected to the same WiFi network, you should be able to go to 
 http://12.34.100.200:1066/ and see Flutterer load. (Note that for security reasons, some WiFi 
 networks prevent computers from talking directly to each other, so if this does not work, that 
 may be the reason.) 

 We hope you have enjoyed seeing how strings, arrays, dictionaries, and objects can interact to 
 form something of this complexity. As it turns out,  every  web application is built using the 
 concepts presented in this class and in this assignment. Some of them use fancy database 
 technologies, some of them use fancy server frameworks, and some of them use fancy client 
 rendering libraries, but fundamentally, they all do the same thing: A server implements some 
 functionality and presents an API that clients can use to interact with it; then, a client written in 
 Javascript will make network requests to exercise that API, and will subsequently update the 
 DOM to display information to the user. We hope this assignment has given you a better sense of 
 how large applications are structured and demystified some of the magic of Google Docs, 
 YouTube, and other common websites. 

 Extensions 

 This assignment has many opportunities for creativity. What additions can you add to your 
 version of Flutterer? As mentioned at the beginning of this handout, the best submission (as 
 judged by Jerry, Jonathan, and the section leaders) will be treated as a contest winner. 

 If you submit an extension, please make a copy of the project and submit a version without 
 any extensions.  This way, we can grade your base submission  and not penalize you for any 



 mistakes (functionality or style) that arise from your extension. Also, please add a comment in 
 your extension documenting what changes you made, so that it is easy for us to find your extra 
 features. 

 Here are some ideas to get you started, sorted (very roughly) in order from least difficulty to 
 greatest difficulty. These are Javascript/CSS-heavy extensions: 

 ●  Show post timestamps:  When each floot is created,  a timestamp is saved indicating 
 when the floot was posted. The floots are already sorted by timestamp, but you can 
 modify the  Floot  component to display the timestamp  as text on the screen. You may 
 want to add a little bit of CSS to make this pretty. 

 ●  Adding a "like" button:  There are two API endpoints  already defined in  api.py  that 
 you can implement, and much of the frontend code for a like button is already provided. 
 You will need to do a bit of work to wire up all the pieces and make everything 
 functional. 

 ●  Adding a "like" button to comments:  If you do the  previous extension, you can take 
 this one step further and add a like button to comments. This will probably require a bit 
 of DOM manipulation and CSS, since this was never implemented in our solution. 

 ●  Reacts:  Instead of having a simple like button, you  can allow users to react to a floot in 
 several different ways. This will require some extra DOM manipulation and CSS. 

 ●  More secure login:  Add a way for a user to sign up  on the website with a username and 
 password. For login, require that they submit the correct password. 

 ●  Other ideas:  Try implementing stickers, "refloots,"  floot search, hashtags, followers, 
 mentions, notifications, more... 

 Here are some Python-heavy extension ideas: 

 ●  Floot sort order:  Instead of sorting the floots by  the time at which they were posted, 
 experiment with some more interesting criteria. For example, Facebook sorts posts by 
 "relevance" (upweighting posts from friends that you talk to a lot, and upweighting posts 
 with keywords like "congratulations" or "life update"). 

 ●  Do some data analysis on the floots:  For those interested  in data processing and 
 visualization, you might try something like generating diagrams of which users interact 
 the most, times of day where posts are heavy, etc. 



 Appendix: Printable Reference 

 List of API endpoints 

 Method  Path  Description 

 GET  /api/floots  Returns a list of Floots from the database. 

 POST  /api/floots 

 Given a new Floot to post (in the request body), puts it 
 into the database and returns it. 

 Request Body: 
 { 

 "message": "string", 
 "username": "string" 

 } 

 GET  /api/floots/{id} 
 Returns a particular Floot, identified by the given id. 
 Returns an HTTPError 404 if that id doesn’t exist. 

 POST  /api/floots/{id}/delete 

 Deletes a particular Floot, identified by the given id. 
 Returns an HTTPError 404 if that id doesn’t exist, or an 
 HTTPError 403 if the user isn’t allowed to delete that 
 Floot (by trusting the username they send in the body). 
 *Security Note: This is clearly terrible security practice; 
 you should never trust that the user is who they say they 
 are without some kind of verification. However, for the 
 sake of simplicity, we decide to simply trust the client. 

 Request Body: 
 { 

 "username": "string" 
 } 

 GET  /api/floots/{floot_id}/ 
 comments 

 Returns a list of comments on a Flood identified by 
 floot_id. Returns an HTTPError 404 if the floot isn’t 
 found. 

 POST  /api/floots/{floot_id}/ 
 comments 

 Given a new comment to post (in the request body) on a 
 particular Floot (identified by the floot_id parameter), 
 adds that comment to the Floot, then returns the new 
 comment (including its new id). Returns an HTTPError 
 404 if the floot isn’t found. 

 Request Body: 
 { 

 "message": "string", 
 "username": "string" 



 } 

 POST  /api/floots/{floot_id}/ 
 comments/{id}/delete 

 Given a particular comment (identified by the floot_id 
 it’s a part of, and the id of the comment), deletes that 
 comment. Returns “OK” if successful. Returns an 
 HTTPError 404 if the floot isn’t found, or an HTTPError 
 403 if the user isn’t allowed to delete that comment. 

 Request Body: 
 { 

 "username": "string" 
 } 

 How to use the  Database 

 We have provided the  Database  class to do persistent  data storage for you, so that saved data 
 stays saved even if you restart your computer. When the Database class is constructed, it loads all 
 of the previously-created floots, comments, users, etc. from  server/data.json  . Then, every 
 time you call  db.save_floot(  floot  )  , the floot is saved  back to the hard drive so that it can be 
 loaded again later. 

 Here are some methods you may find helpful: 

 Member Name  Description 

 db = Database()  Calls the constructor to create a new  Database  . You 
 won't need to call this yourself; a  Database  is already 
 created for you at the top of  api.py  . 

 floots = db.get_floots()  Returns a list of  Floot  objects (see below) stored  in the 
 database, sorted from newest to oldest. 

 present = db.has_floot(  id  )  Returns  True  if a  Floot  with the provided id exists  in 
 the database; returns  False  otherwise. 

 floot = db.get_floot_by_id(  id  )  Returns the  Floot  object with the provided id. Raises  a 
 KeyError  if the id is invalid. 

 db.save_floot(  floot  )  Saves the provided  Floot  object into the database.  You 
 can call this multiple times on the same floot to replace 
 old data and save the floot’s latest version. Important: 
 you’ll need to call this method to re-save a  Floot  if 
 you add or remove comments from that  Floot  . 

 db.delete_floot_by_id(  id  )  Deletes the  Floot  object with the provided id. Raises  a 



 KeyError  if the id is invalid. 

 db.delete_floot(  floot  )  Deletes the provided  Floot  object.  Raises a  KeyError 
 if the provided  Floot  is not in the database. 

 We also provide a  Floot  class in  server/floot.py  ,  outlined below: 

 Member Name  Description 

 floot = Floot(  message  , 
 username  ) 

 Calls the constructor to create a new  Floot  . 

 timestamp = floot.get_timestamp()  Returns a timestamp (string) of when the  Floot 
 was created. 

 comments = floot.get_comments()  Returns a list of  FlootComments  associated with 
 this  Floot  . 

 floot_id = floot.get_id()  Returns the id (string) that uniquely identifies this 
 Floot  . 

 username = floot.get_username()  Returns the username of this  Floot  ’s creator 

 floot.delete_comment(  comment  , 
 username  ) 

 Deletes the provided  FlootComment  if it was 
 written by the provided username. Raises a 
 KeyError  if the provided comment isn’t present in 
 this  Floot  , and raises a  PermissionError  if the 
 provided comment wasn’t written by the provided 
 username. Make sure to call 
 db.save_floot(floot)  after deleting the 
 comment, so that the change gets saved to the 
 database. 

 floot.create_comment(  comment  )  Adds the provided  FlootComment  to this  Floot  . 
 Make sure to call  db.save_floot(floot)  after 
 adding the comment, so that the comment gets 
 saved to the database. 

 floot.set_liked(  username  ,  liked  )  Accepts a username (string) and boolean value and 
 notes that the given user likes (or doesn’t like) this 
 Floot  . Make sure to call  db.save_floot(floot) 
 after changing the liked status. 

 liked_by = floot.get_liked_by()  Returns a list of usernames (strings) that like this 
 Floot  . 

 num_likes = floot.get_num_likes()  Returns the number of users that like this  Floot  . 



 as_dict = floot.to_dictionary()  Returns a dictionary where the keys are field 
 names and the values are the values of the fields. 
 Use this if you want a dictionary representing a 
 Floot  , which is useful since dictionaries are 
 JSON-encodable. 

 There’s also a  FlootComment  class, which we’ve opted to omit here. Take a look at 
 server/floot_comment.py  to learn more! 


