
Jerry Cain Handout #26
CS106AX December 11th, 2023

CS106AX Final Examination

General instructions
Answer each of the five questions included in the exam. Write all answers directly on the
examination paper, including any work that you wish to be considered for partial credit.

Each question is marked with the number of points assigned to that problem. The total
number of points is 100. We intend for the number of points to be roughly comparable to
the number of minutes you should spend on that problem. This leaves you with an
additional 80 minutes to check your work or recover from false starts.

Unless otherwise indicated as part of the instructions for a specific problem, comments
will not be required on the exam. Uncommented code that gets the job done will be
sufficient for full credit on the problem. On the other hand, comments may help you to
get a little bit of partial credit if they help us determine what you were trying to do.

The examination is open-book, and you may make use of any texts, handouts, or course
notes. You may not, however, use a computer of any kind.

First and Last Name: _______________________________________

SUNet ID (your @stanford.edu address): ______________________

Section Leader: __

 – 2 –

Problem 1: Python Strings (20 points)
Implement a function called lrnoss—that’s short for longest repeating, nonoverlapping
substring—which accepts a string and returns the longest substring that appears at least
twice, with the added constraint that at least two copies of the substring are
nonoverlapping. If there are multiple such substrings, then lrnoss can return any single
one of them and ignore the others. And if there are no repeating substrings at all, your
function should just return the empty string.

For instance, the longest repeating, nonoverlapping substring within "aabaabaaba" is
"aaba" (and I’ve underlined the two copies of "aaba" as proof they’re nonoverlapping).
It’s true that "abaa", "baab", and even longer substrings like "aabaa" and "aabaab"
appear multiple times as well, but in all cases the first copy overlaps with the second.
However, there are two copies of "aaba" that don’t overlap, so that’s the longest
repeating, nonoverlapping substring!

More examples:

lrnoss('abcabcabc') might return 'abc'
lrnoss('aabaabaaba') returns 'aaba'
lrnoss('banana') might return 'an'

lrnoss('windowwasher') returns 'w'
lrnoss('abcdefgh') returns ''

The first and third examples say might return, because there were other possible return
values. But the function is only required to return one of them, not all of them.

Present your implementation on the next page.

	

(space for your answer to problem #1 appears on the next page)

 – 3 –

def lrnoss(str):
 """

Accepts an arbitrary string and returns the longest substring
that appears at least twice, where at least two copies of the
substring are nonoverlapping.

 """

 – 4 –

Problem 2: Python Lists (20 points)
The Playfair cipher relies on a 5x5 table of letters—all letters of the alphabet minus the
Q, which is omitted because it’s so rare—to guide the encryption of a cleartext message.
The table is constructed from a passphrase by filling in the 25 slots from left to right, top
to bottom, with the letters of the passphrase in the order they first appear and then filling
any remaining spots with the rest of the letters of the alphabet.

For instance, if the passphrase is 'OBSERVEOBLONGCHEWYINERT', the table would look
like this:

O B S E R

V L N G C

H W Y I T

A D F J K

M P U X Z

For this problem, you’ll implement just the construct_playfair_table function,
which accepts the passphrase and constructs the relevant table as described above. The
table is really list of length 5, where each entry itself is a list of 5, one-character strings.
You may assume the passphrase is composed of uppercase letters minus the 'Q'. So, a
call to construct_playfair_table('OBSERVEOBLONGCHEWYINERT') might go like this:

>>> print(construct_playfair_table('OBSERVEOBLONGCHEWYINERT'))

[['O', 'B', 'S', 'E', 'R'],
 ['V', 'L', 'N', 'G', 'C'],
 ['H', 'W', 'Y', 'I', 'T'],
 ['A', 'D', 'F', 'J', 'K'],

 ['M', 'P', 'U', 'X', 'Z']]
>>>

	

(space for your answer to problem #2 appears on the next page)

 – 5 –

def construct_playfair_table(passphrase):
 '''
 Constructs a Playfair table as described in the problem statement.
 '''
 ALPHABET = 'ABCDEFGHIJKLMNOPRSTUVWXYZ' # note Q is omitted

 – 6 –

Problem 3: Working with Python Dictionaries (20 points)
CS106A and CS106AX students are asked to use PyCharm to manage all Python files
contributing to any one assignment. Interestingly enough, large portions of PyCharm are
themselves implemented in Python—in particular, PyCharm maintains persistent data
structures about who edited which file last and when they did so. For instance, PyCharm
maintains the following information on behalf of the team of people making changes and
introducing bugs!

project = {
 "name": "Flutterer",
 "files": {
 "api.py": {
 "size": 2312, # in bytes
 "commits": [{
 "author": "Eugene",
 "timestamp": "2023-12-04T14:45:30",
 "bugs": 13
 }, {
 "author": "Natalia",
 "timestamp": "2023-12-03T12:10:13",
 "bugs": 0
 }, {
 "author": "Natalia",

 "timestamp": "2023-12-03T11:00:01",
 "bugs": 1
 }]
 },
 "floot.py": {
 "size": 5421,
 "commits": [{
 "author": "Reilly",
 "timestamp": "2023-12-05T19:44:51",
 "bugs": 2
 }, {
 "author": "Eugene",
 "timestamp": "2023-12-03T10:20:15",
 "bugs": 9
 }]

 },
 "floot_comment.py": {
 # similarly structured
 }

 }
}

Each of the commits fields you see are themselves lists of dictionaries, where each
dictionary details the number of bugs the specified user introduced at the time they saved

 – 7 –

the file. In principle, any single commits list can be empty or arbitrarily large, and each
developer (e.g., Eugene, Natalia, Reilly, or anyone else) can appear multiple times within
a single commits list (as Natalia clearly does) and across multiple commits lists (as
Eugene clearly does).

Your job here is to implement the shame function, which accepts a project data structure
much like that above and returns the name of the author who’s contributed the largest
number of total bugs across all commits to the project. J Your implementation, of
course, should work for any data structure like that above. If two or more people
contribute the same maximum number of bugs, you can return any single one of them.

Use the space below and on the next page to implement your shame function. Your
implementation can assume the supplied project is structured as the one described above.

def shame(project):
 '''
 Crawls over the entire project and returns the name of the author
 who has introduced the most bugs across all commits to all files.
 '''

(more space for your answer to problem #3 appears on the next page)

 – 8 –

 (more space for your answer to problem #3 appears below)

 – 9 –

Problem 4: Defining Python Classes and Reading Files (20 points)
In 2019, the College Board announced plans to share landscape metrics alongside SAT
scores with admission panels. These metrics were designed to be used by admissions
officers to decide whether the various social and economic hardships captured by the
metrics might inform their interpretation of the applicant’s performance. The metrics
were computed on a per-school basis, and the College Board included those metrics
alongside the scores.

Imagine you are building a platform whose sole purpose is to search through these
metrics. You have been granted access to the data in a single file, formatted like so:

 Alabama
 Auburn,Auburn High School,1250,43
 Birmingham,Oak Mountain High School,1230,77
 Birmingham,Spain Park High School,1270,64
 ... ⇐ many schools omitted
 Vestavia Hills,Vestavia Hills High School,1370,64
 ⇐ blank line marks end of Alabama’s data
 Alaska
 Anchorage,Diamond High School,1080,68
 Anchorage,East High School,1020,50
 Anchorage,West High School,1100,50
 ... ⇐ many schools omitted
 Wasilla,Wasilla High School,1010,23
 ⇐ blank line marks end of Alaska’s data
 ... ⇐ many more states
 ⇐ blank line marks end of West Virginia’s data
 Wisconsin
 Beaver Dam,Wayland Academy,1170,9
 Brookfield,Brookfield Central High School,1420,90
 ... ⇐ many schools omitted
 Milwaukee,University School Milwaukee,1390,86
 ⇐ blank line marks end of Wisconsin’s data

Each state for which data was available is included in this file, and the data available for
each state (including the last one in the file) is terminated by a blank line. The first line
for each state is the name of the state itself, and all other lines for that state provide
details for a school where 30 or more students took the SAT. Each line beyond the first is
a comma-separated list of four items: city, school name, median SAT score, and the
integer percentage of students who enroll in either a two- or four-year college or
university upon graduation.

For this problem, you’re to provide the implementation of a Python class
called SATMetrics whose constructor opens a file, assumes it’s structured as above, and
parses the entire file to build an internal representation of the information that allows it to
respond to two additional methods reasonably quickly. Those methods are:

• getCityStateData, which accepts a city and state and returns a list of
dictionaries, where each dictionary aggregates information about a high school

 – 10 –

across three properties: name, sat, and college. So, as a call
to getCityStateData("Anchorage", "Alaska") would return:

 [
 {"name": "Diamond High School", "sat": 1080, "percent": 68},
 {"name": "East High School", "sat": 1020, "percent": 50},
 {"name": "West High School", "sat": 1100, "percent": 50},
]

 If the city or state isn’t present, your method should simply return an empty list.

• getHighSchoolsMeetingThreshold, which accepts an SAT score as argument
and returns the names of the high schools whose median SAT score matches or
exceeds the number supplied. Your return value should just include the names of
high schools and shouldn’t be worried if two high schools happen to share the
same name. You can assume all median scores are multiples of 10 and range from
200 to 1600 inclusive. So, a call to getHighSchoolsMeetingThreshold(1220)
would return a list structured as:

 ["Auburn High School", "Spain Park High School", # plus others

If no high schools meet the supplied threshold, your method should simply return
the empty list.

Using the next two pages, present your implementation of the SATMetrics constructor
and the two methods as described above. The constructor should do all the file processing
and most of the work needed to ensure the two method implementations at most a few
(e.g., perhaps 1 – 6) lines long. You shouldn’t use the TokenScanner class, but you
should rely on the Python string’s split method, which works like this:

'sentence without punctuation'.split(' ') returns ['sentence', 'without', 'punctuation']

'172.43.100.128'.split('.') returns ['172', '43', '100', '128']

'lions, tigers, bears'.split(',') returns ['lions', ' tigers', ' bears']

	

(space for your answer to problem #4 appears on the next page)

 – 11 –

class SATMetrics:
 """
 Exports a class that allows one to profile various high schools
 for their median SAT scores and other metrics.

 Code for the constructor should be included on this page, and code
 for the two methods should be presented on the next page. You may
 not always need the full amount of space that’s been provided.
 """

 def __init__(self, filename):
 """
 Parses the contents of the named file and compiles
 all of the internal data structures needed to ensure
 the two other methods can run reasonably fast.
 """

	

(even more space for your answer to problem #4 appears on the next page)

 – 12 –

 def getCityStateData(self, city, state):
 """
 Returns a list of dictionaries, where each dictionary
 contains information about a high school within the supplied
 city and state.
 """

 def getHighSchoolsMeetingThreshold(self, threshold):
 """
 Returns a list of all high schools with median SAT score at
 or above the supplied threshold.
 """

 – 13 –

Problem 5: Client-Side JavaScript (20 points)
Many major airlines provide travel service between most airports within the U.S.,
Canada, and Mexico. When booking air travel back and forth between, say, Chicago and
Mexico City, you’ll typically visit the websites of many airlines—perhaps Aeroméxico,
Delta, United, Viva Aerobus, Volaris—to compare prices and generally book the least
expensive one. When flying between Toronto and Seattle, Aeroméxico, Viva Aerobus,
and Volaris won’t provide any options, but Delta, United, and Air Canada do. To
simplify your travel planning needs, you’ve decided to write client-side JavaScript using
our AsyncRequest class to invoke API endpoints provided by all major airlines to see
which ones offer service between any two airports of your choosing.

Miraculously, all the airlines provide APIs with the same URL structure—beyond the
domain name (e.g., www.delta.com, www.united.com, www.aircanada.com,
www.aeromexico.com, etc.) the API endpoint is simply "/search", where GET
parameters depart and arrive are used to specify the airport codes (e.g., SFO, JFK,
ORD, LAX, etc.) of the departure and destination cities. The response payload from each
API endpoint—no matter the domain name—is always JSON including two or three
fields, depending on whether the airline provides travel options between the two airports.
The JSON payload contains an airline property specifying the full name of the airline,
a found property reporting true if and only the airline flies between the two airports, and
a price attribute supplying the best available price in US dollars (though the price
property will be missing if found is reported as false).

So:

http://www.united.com/search?depart=SFO&arrive=YYZ

might respond with a payload of:
{
 airline: "United Airlines",
 found: true,
 price: 801.50
}

whereas:
http://www.aeromexico.com/search?depart=SFO&arrive=YYZ

might respond with a payload of:
{
 airline: "Aeroméxico",
 found: false,

}

You’re to implement a function called options that accepts departure and arrival airport
codes and eventually prints out a list of all airline names, one per line, alongside the best
price that airline offers. If an airline doesn’t offer service between the two airports, you
should simply omit it from the listing. Once all requests have been processed and all
responses have been received, you should print out the best price. You should issue all
requests to all airline API servers so they are all processed simultaneously, and you may

 – 14 –

print out each line of the list, except for the last one, in any order. So, a call to
options("SFO", "YYZ") might ultimately print out the following:

Delta Airlines: $578.70
Alaska Airlines: $1008.00
United Airlines: $801.50
Air Canada: $477.00
American Airlines: $560.00
Air Canada offers the best deal at $477.00

To be clear, options queries all airlines, including those not listed presumably because
those airlines responded saying they didn’t provide service between the two airports. The
five airlines that were listed might have been listed in any order, but the final line can
only be listed after your implementation detects the last response has come in.

Present your implementation of options on the next page. Your success handler will
need to be defined as an inner function—within options—so it can access any top-level
variables you define. Think very carefully about how you can keep track of the best price
and the number of responses you’ve received so you know when all responses have come
in. You may assume at least one airline provides service between the two cities and that
all API calls succeed.

(more space for your answer to problem #5 appears on the next page)

 – 15 –

function options(depart, arrive) {
 let domains = ["www.aa.com", "www.aeromexico.com", "www.aircanada.com",
 "www.alaskaair.com", "www.avianca.com", "delta.com",
 … many other airlines
 "www.united.com", "www.westjet.com"];
 let numDomains = domains.length;

 // present any additional variable needed and the rest of your
 // implementation, including the inner function serving as your
 // success handler.

