
Jerry Cain               Handout #11 
CS 106AX        October 23, 2023 

Practice Midterm Examination 
 

Midterm exams: Wednesday, November 1, 3:30–5:30P.M., 200-002 
 Wednesday, November 1, 7:00–9:00P.M., 370-370 
 
 
Problem 1: Simple Java expressions, statements, and methods (10 points) 
(1a) Compute the value of each of the following JavaScript expressions: 
 

 3 + 2 * 2 - 15 % 5 * 100 _____________________________ 
  

 "B" === "b" || "H" < "GGG"  _____________________________ 
 

 20 + 7 + "1" + 8 + 4 * 7  _____________________________ 
 
 
(1b) Assume that the method riddle has been defined as follows: 
 

function riddle(str) { 
 let result = ""; 
 for (let i = 0; i < str.length; i++) { 
  if (i === str.lastIndexOf(str.charAt(i))) { 
   result += str.charAt(i); 
   str = str.substring(i + 1); 
   i = -1; 
  } 
 } 
 return result; 
} 

 
 What is the value returned by riddle("mirrormirror")? 
  



  – 2 – 

(1c) What output is printed by the following Problem1c program? 
 

function Problem1c() { 
 let day = "halloween"; 
 let fn = function(x, y, z) { 
  return z.substring(x, y) + day.substring(y); 
 }; 
 day = spooky(fn, day.indexOf("a"), day.indexOf("o")); 
 day.toLowerCase(); 
 console.log(day); 
} 
 
function spooky(f, x, y) { 
 let ghost = f(x, y, "nightmare"); 
 ghost += "xyz".charCodeAt(1) - "a".charCodeAt(0); 
 return ghost.toUpperCase(); 
} 

 
Problem 2: Using graphics and animation (15 points) 
When Marissa Mayer (former CEO of Yahoo! Inc.) took CS 106A, her entry in the 
Graphics Contest was a screensaver program that simulated fireworks.  Your task in this 
problem is to implement an exam-sized subset of her contest-sized application. 
 
Your program should execute the following steps: 
 
1. Create a tiny dot (an unfilled circle whose width and height are both one pixel) at the 

point that lies at the center of the bottom of the window and color it using a randomly 
chosen color. 

2. Choose a random point somewhere in the top half of the window. 
3. Animate the motion of the dot so that it moves to the point you chose in step 2.  The 

dot should move so that gets to its destination in FLIGHT_TIME milliseconds. 
4. Once the dot reaches its destination, you should change the behavior of the animation 

so that the circle radius increases by DELTA_RADIUS pixels for EXPANSION_TIME 
milliseconds. 

 
An animation with random behavior is difficult to represent on the printed page, but the 
final image on the window will look something like this (the dotted line shows the flight 
path of the dot, although this line would not appear on the window): 
 

 
 

 

  function Fireworks() { 
 



  – 3 – 

Problem 3: Strings (15 points) 
A portmanteau is a linguistic compression of two words into one.  For example, the word 
smog is a portmanteau of smoke and fog.  Similarly, the vegetarian Thanksgiving 
alternative called tofurkey is a portmanteau of tofu and turkey. 
 
For this problem, we’ve restricted the rules for creating a portmanteau so that they apply 
only to words that contain a common vowel.  Under this rule, a portmanteau is formed by 
searching for the leftmost vowel in the first word that also appears in the second word, as 
in the o in smoke and fog or the u in tofu and turkey.  Once a vowel common to both is 
identified, the compression is generated by taking everything in the first word up to and 
including the first occurrence of the shared vowel and prepending it to everything in the 
second word appearing beyond its first instance of that same vowel.  That means "smog" 
is really "smo" followed by "g", and "tofurkey" is really "tofu" followed by "rkey". 
 
Write a function 
 

 function portmanteau(word1, word2) 
 
that creates the portmanteau of word1 and word2 using this rule.  If the two words do not 
contain a common vowel, your function should return the constant null to show that no 
portmanteau is possible under this rule.  You may assume both of the supplied words are 
all lowercase.  And you’re more than welcome to decompose, as our own solution relied 
on two helper functions (one of which we’ve already seen in lecture). 
 
Problem 4: Arrays (15 points) 
Implement a function called dedupe, that accepts an arbitrary array and updates it so that all 
duplicates have been removed.  dedupe doesn't return a new array, but instead updates the 
supplied one so that all duplicates are gone.  As each duplicate element of the incoming array 
is removed, the length of the array shrinks by one.  (The items that do remain need not appear 
in any particular order.) 
 
Use the rest of this page to supply your implementation of dedupe. 
 
 function dedupe(array) { 
 
Problem 5: Working with data structures (15 points) 
Although it is hard to imagine now, Facebook’s IPO in 2012 didn’t go as well as 
predicted, and the Morgan Stanley brokerage that handled the offering was forced to 
make restitution to some clients, primarily for late trades.  Suppose, for example, that a 
client ordered a sale at 11:28am on May 18, when Facebook was selling at $40.00 a 
share.  Given the many delays on that day, Morgan Stanley might not have been able to 
execute the sell order until 3:58pm, when Facebook shares had dropped to $38.07.  That 
client therefore lost $1.93 per share, which adds up quickly if the trade involved a large 
block of shares. 
 
Suppose that Morgan Stanley has hired you to write a simple application to calculate 
refunds due to its customers.  You have access to a data structure that contains the 



  – 4 – 

complete history of the share price for Facebook in the early days of trading.  The data 
structure is an array of aggregates, each of which has three fields: a date field containing 
the date as a string (as in "5/18/2012" for May 18, 2012), a time field indicating the 
time as a string (as in "11:30am"), and a price field as a number.  A few entries in that 
array look like this when represented in JSON form: 
 

const FB_SHARE_PRICE_DATA = [ 
   { date:"5/18/2012", time:"11:30am", price:42.0000 }, 
   { date:"5/18/2012", time:"11:31am", price:42.0125 }, 
   { date:"5/18/2012", time:"11:32am", price:42.0250 }, 
   { date:"5/18/2012", time:"11:33am", price:42.0250 }, 
   { date:"5/18/2012", time:"11:34am", price:40.9474 }, 
   { date:"5/18/2012", time:"11:35am", price:40.8425 }, 
   { date:"5/18/2012", time:"11:36am", price:40.1500 }, 
   { date:"5/18/2012", time:"11:37am", price:40.0367 }, 
   { date:"5/18/2012", time:"11:38am", price:40.0000 }, 
       . . . more entries for May 18 . . . 
   { date:"5/18/2012", time:"3:55pm", price:38.0685 }, 
   { date:"5/18/2012", time:"3:56pm", price:38.1050 }, 
   { date:"5/18/2012", time:"3:57pm", price:38.0997 }, 
   { date:"5/18/2012", time:"3:58pm", price:38.0700 }, 
   { date:"5/18/2012", time:"3:59pm", price:38.2599 }, 
   { date:"5/18/2012", time:"4:00pm", price:38.2699 }, 
]; 

 
Write a function 
 

function facebookRefund(nShares, date, timeOrdered, timeExecuted) 
 
that uses the data in FB_SHARE_PRICE_DATA to compute the refund due to a customer who 
tried to sell nShares of Facebook stock if the order was made at timeOrdered on the 
specified date but the order was not completed until timeExecuted. 
 
As an example, suppose that a client tried to sell 1000 Facebook shares at 11:38am on 
May 18, but Morgan Stanley was unable to complete the transaction until 3:58pm.  You 
can compute the necessary refund by calling 
 

facebookRefund(1000, "5/18/2012", "11:38am", "3:58pm") 
 
The implementation has to look through the FB_SHARE_PRICE_DATA array to find the 
price of Facebook stock at the two specified times.  From the table on the preceding page, 
you can see that Facebook stock was selling for $40.00 per share at 11:38am but had 
dropped to $38.07 per share by 3:58pm.  Morgan Stanley’s delay therefore cost the client 
$1.93 per share.  Since the client was selling 1000 shares, the total refund is $1,930.00, 
which is the value that facebookRefund should return.  The value of facebookRefund 
should never be negative.  If the client profited from the delay, facebookRefund should 
simply return 0.  For simplicity, you may assume that FB_SHARE_PRICE_DATA contains 
the date and two times passed in. 
 
 


