
Jerry Cain Handout #19
CS 106AX November 10th, 2023

Assignment #6—Adventure

This assignment and handout were each constructed by Eric Roberts. Eric has given this assignment many
times over the last 20 years while teaching CS106A here at Stanford, and it works better in Python than in

any of the other languages used in prior offerings.

Welcome to the Game of Adventure! Your mission in this assignment is to write a
simple text-based adventure game in the tradition of Will Crowther's pioneering
"Adventure" program of the early 1970s. In games of this sort, the player wanders
around from one location to another, picking up objects, and solving simple puzzles. The
program you will create for this assignment is less elaborate than Crowther’s original
game and is therefore limited in terms of the type of puzzles one can construct for it.
Even so, you can still write a program that captures much of the spirit and flavor of the
original game.

Because this assignment is large and detailed, it takes quite a bit of writing to describe it
all. This handout contains everything you need to complete the assignment, along with a
considerable number of hints and suggestions. To make it easier to read, the document is
divided into the following sections:

1. Overview of the adventure game .. 2
2. Structure of the data files ... 4
3. Milestones .. 8

Don’t be daunted by the size of this handout. The codebase you’re to work with is not as
large as you might think. If you start early and follow the suggestions in the
"Milestones" section, things should work out beautifully.

Due: Friday, November 17th, 5:00P.M.

 – 2 –

Section 1
Overview of the Adventure Game

The adventure game you will implement for this assignment—like any of the text-based
adventure games that were the dominant genre before the advent of more sophisticated
graphical adventures like the Myst/Riven/Exile series—takes place in a virtual world in
which you, as the player, move about from one location to another. The locations, which
are traditionally called rooms even though they may be outside, are described to you
through a written textual description that gives you a sense of the geography. You move
about in the game by giving commands, most of which are simply an indication of the
direction of motion. For example, in the classic adventure game developed by Willie
Crowther, you might move about as follows:

In this example, you started outside the building, followed the road up the hill by typing
WEST, and arrived at a new room on the top of the hill. Having no obvious places to go
once you got there, you type EAST to head back to where you started. As is typical in
such games, the complete description of a location appears only the first time you enter it.
The second time you come to the building, the program displays a much shorter
identifying tag, although you can get the complete description by typing LOOK, as follows:

From here, you might choose to go inside the building by typing IN, which brings you to
another room, as follows:

In addition to the new room description, the inside of the building reveals that the
adventure game also contains objects: there is a set of keys here. You can pick up the

 – 3 –

keys by using the TAKE command, which requires that you specify what object you’re
taking, like this:

The keys will, as it turns out, enable you to get through a grating at the bottom of the
streambed that opens the door to Colossal Cave and the magic it contains.

The best model for the Adventure project is the teaching machine example that appears in
Chapter 11 of the Python reader. The starter folder for Assignment #5 includes the code
for the teaching machine so that you can copy whatever parts of the code you think will
be useful. The starter folder also includes the tokenscanner library, the various data files
described later in this handout, and the following stub files for the adventure game:

• Adventure.py—This file defines the Adventure function itself, which is just a few
lines long and looks almost exactly the same as the TeachingMachine.py file
presented in lecture. The complete code for Adventure.py is given to you in the
starter project, and you shouldn’t need to change anything in this file except for the
definition of the ADVENTURE_PREFIX constant when you want to work with other data
files.

• AdvGame.py—This file defines the AdvGame class, which implements the game and is
therefore analogous to the TMCourse class in the teaching machine. This class exports
just one method: the run method, which is called by the Adventure function to start
the game. Although the run method is complex—and certainly complex enough to
warrant decomposition—you will have a chance to build it up gradually as you go
through the milestones.

• AdvRoom.py—This file defines the AdvRoom class, which represents a single room in
the game and is analogous to the TMQuestion class in the teaching machine. The
starter file contains the header lines for the methods you need for Milestone #1. As you
move on to later milestones, you will need to add a few more methods as described
later in this handout.

• AdvObject.py—This file defines the AdvObject class, which represents an object in
the game. This file specifies the header lines for all the methods that AdvObject
supports. You will have a chance to implement these methods in Milestone #4.

 – 4 –

Section 2
Structure of the data files

Like the teaching machine program, the Adventure program you create for this project is
entirely data driven. The program itself doesn’t know the details of the game geography,
the objects that are distributed among the various rooms, or even the words used to move
from place to place. All such information is supplied in the form of data files, which the
program uses to control its own operation. If you run the program with different data
files, the same program will guide its players through different sets of rooms that
presumably have different interconnections, objects, and puzzles.

The starter project includes data files for three different adventures of varying sizes. The
smallest of these is the Tiny adventure, which describes an adventure with four rooms
and no objects. The largest is the Crowther adventure, which includes a relatively
sizable subset of Will Crowther’s original Adventure game. In between those extremes is
the Small adventure, which includes examples of the main features in the game in a
limited space containing just 12 rooms. You should use the Tiny adventure until you get
to Milestone #4. After that, you should use the Small adventure whenever you’re
debugging. Once you’ve got things working, you can move on to the Crowther
adventure.

To indicate which data files to use, the Adventure.py program defines a constant called
ADVENTURE_PREFIX, which identifies the string that appears at the beginning of the
filenames used for that adventure. To get the adventure game illustrated in the earlier
examples, ADVENTURE_PREFIX is set to "Crowther", which selects the collection of files
associated with a relatively sizable subset of Will Crowther’s original Adventure game.
For each adventure, there are up to three associated data files that contain the name of the
adventure as a prefix. For the Crowther adventure, for example, these files are:

• CrowtherRooms.txt, which defines the rooms and the connections between them. In
these examples, you have visited three rooms: outside of the building, the top of the
hill, and the inside of the well house.

• CrowtherObjects.txt, which specifies the descriptions and initial locations of the
objects in the game, such as the set of keys.

• CrowtherSynonyms.txt, which defines several words as synonyms of other words so
you can use the game more easily. For example, the compass points N, E, S, and W are
defined to be equivalent to NORTH, EAST, SOUTH, and WEST. Similarly, if it makes sense
to refer to an object by more than one word, this file can define the two as synonyms.
As you explore the Crowther cave, for example, you will encounter a gold nugget, and
it makes sense to allow players to refer to it using either GOLD or NUGGET.

These data files are not Python programs but are instead text files that describe the
structure of a particular adventure game in a form that is easy for game designers to
write. The Adventure program reads these files into an internal data structure, which it
then uses to guide the player through the game.

 – 5 –

The Rooms file

The Rooms file contains the names and descriptions of the rooms along with the passages
that connect them. The contents of TinyRooms.txt, for example, appear in Figure 1.

The first thing to notice about the TinyRooms.txt data file is that it matches almost
exactly the format used for the teaching machine application. The only differences are:

1. There is no title line at the top.
2. Each room includes a one-line short description as well as a longer, multiline

description.

When you implement the code to read the data file for the rooms, you will have to make a
few small changes to accommodate these differences. The more substantial part of
revising the implementation, however, lies in making sure that the names of all the
variables and methods match the metaphor of the Adventure game and not the teaching
machine. It would certainly confuse anyone looking at your code to see names like
questions and answers. In the context of an Adventure game, the code needs to refer to
rooms and passages instead.

 – 6 –

The Objects file

Although you won’t need to think about this file until you get to Milestone #4, both the
Small and Crowther adventures define a set of objects that are distributed somewhere in
the cave, such as the keys you saw in the earlier example. Like the rooms, the objects in
the game are specified using a data file, such as the one for the Small adventure shown
above in Figure 2.

The contents of the Objects file consist of a series of three-line entries, one for each
object. The first line is name of the object, which is also the word that the player uses to
refer to the object. The second is a short description of the object, usually beginning with
an article like a or an. The third is the name of the room in which the object is placed at
the beginning of the game. For example, the lines

 KEYS
 a set of keys
 InsideBuilding

Collectively define an object whose name is "KEYS" and whose description is "a set of
keys". At the beginning of the game, that object is placed in the room whose identifying
name is "InsideBuilding", which is precisely where you saw it in the sample runs in
Section 1.

The last entry in the SmallObjects.txt data file illustrates a feature that requires
special handling. The lines

 WATER
 a bottle of water
 PLAYER

specify that the bottle of water starts off in the player’s possession. You will have to
check for this case in the code that distributes the objects, starting in Milestone #4.

 – 7 –

The Synonyms file

The last data file is the Synonyms file, which consists of a sequence of definitions that
allow the player to use more than one word to refer to a direction or an object. The
SmallSynonyms.txt file in Figure 3, for example, defines BOTTLE as a synonym for
WATER, since both nouns appear in the descriptions. It also defines abbreviated forms of
the standard directions so that the player can type N instead of NORTH, along with a few
equivalent words for verbs like TAKE and DROP.

 – 8 –

Section 3
Milestones

For a project of any reasonable complexity, it is important to implement the project in
stages rather than trying to get it going all at once. As with the Enigma assignment,
we’ve given you a set of milestones that will lead you through the process in a series of
manageable steps.

Milestone #1: Modify the teaching machine code so that it fits with Adventure

As you saw in lecture, the TeachingMachine.py program works as a rudimentary
Adventure-style game if you simply change the data file. The result of doing so, however,
does not constitute a useful basis for building up a more sophisticated Adventure game. If
nothing else, the metaphors used in the code are entirely inappropriate to the new context.
The teaching machine program talks about courses, questions, and answers, none of
which make sense in the Adventure world. The corresponding concepts in Adventure are
games, rooms, and passages. Your first step is to take the code for the teaching machine
and adapt it so that it makes sense for the Adventure-game model.

You have two starting points for this phase of the project. The TeachingMachine folder
contains the code for the teaching machine application presented in lecture and in the
course reader. The assign-6 folder contains the starter versions of the files you need to
implement the classes used in the Adventure game. Your task for this milestone is to
adapt the code from the TMCourse.py and TMQuestion.py files into their AdvGame.py
and AdvRoom.py counterparts (you don’t have to do anything with AdvObject.py until
Milestone #4).

The code you need to complete this milestone is entirely there already, at least in a
functional sense. All you have to do is copy the code from the teaching machine
application into the corresponding classes in the Adventure game, changing the names of
fields and methods so that they fit the Adventure game metaphor and making the two
small changes described on page 5. The new names of the exported methods are given to
you as part of the starter files, but you will also need to change the names of a few
variables and attributes so that they make sense in the context of the game.

This milestone has two primary purposes:

1. To ensure that you understand what’s going on in the teaching machine application.
2. To give you some practice in debugging. Even though the structure of the code

remains exactly the same, this milestone is not as easy as you might think. Nearly all
the variable and method names will have to change, and you’ll need to be careful to
make sure that your changes are consistent. Since you’ll probably make some
mistakes along the way, you’ll need to polish up your debugging skills to figure out
exactly what you did wrong.

When you finish this milestone, you should be able to wander a bit around the surface of

 – 9 –

the Adventure world, heading up to the top of the hill, inside the building, and down to
the grate. You won’t, unfortunately, be able to get past the grate until Milestone #7.

Milestone #2: Implement short descriptions of the rooms

The Adventure game would be tedious to play—particularly when output devices were as
slow as they were in the 1970s—if the program always gave the full description of the
room every time you entered it. Crowther’s game introduced the idea of short
descriptions, which were one-line descriptions for rooms that the player has already
visited. The long description appears the first time a room is entered or when the player
types LOOK, and the short description appears thereafter.

Your job in this milestone is to implement this feature in your program. You presumably
already implemented the getShortDescription method in the AdvRoom class, but you
need to add two new methods to AdvRoom to keep track of whether the room has been
visited and change the code in AdvGame so that it checks for that condition and prints out
the short description for rooms the player has already seen. The new methods in the
AdvRoom class are setVisited and hasBeenVisited. The first takes a Boolean value
and stores that with the room as a flag indicating that the room has been visited. The
second returns the value of that flag.

Once you have completed this milestone, your program should be able to generate the
following sample run:

Note that the second time the player reaches the starting room, the program displays the
short description.

Milestone #3: Implement the QUIT, HELP, and LOOK commands
Most of the commands entered by the player are words like WEST or EAST that indicate a
passage to another room. Collectively, these words are called motion verbs. Motion
verbs, however, are not the only possible commands. The Adventure game allows the
player to enter various built-in commands called action verbs. The six action verbs you
are required to implement (although you only need to implement QUIT, HELP, and LOOK as
part of this milestone) are described in Figure 4 at the top of the next page.

 – 10 –

The first thing you need to do to implement this milestone is to subdivide the user’s input
into individual words—a process that the tokenscanner module makes easy. Once
you’ve done that, you need to look at the first word to see if it is one of the action verbs
before checking whether a motion verb applies. You then need to implement the first
three action verbs. The QUIT command stops the program from reading any more user
commands, just as a new room with the name "EXIT" does in the code you adapted from
the teaching machine. The HELP command prints the contents of the HELP_TEXT constant
on the console. The LOOK command prints the long description for the current room.

Once you have finished this milestone, your program should be able to produce this
sample run:

 Figure 4. The built-in action verbs

 – 11 –

Milestone #4: Read in the objects and distribute them to their initial locations

The most important extension that separates the Adventure game from the teaching
machine application is the introduction of objects like keys and treasures. The objects are
specified in the Objects file described in Section 2. For example, the first object in the
SmallObjects.txt data file is the set of keys, for which the description consists of the
following three lines:

 KEYS
 a set of keys
 InsideBuilding

Your first task in this milestone is to implement the AdvObject class, which is given to
you in skeletal form in the starter folder. The AdvObject class defines a constructor and
the getter methods getName, getDescription, and getInitialLocation, along with a
static readObject method that reads an object from a data file. Your model for this file is
the AdvRoom class, which implements the same mechanism for the more complicated data
structure used for rooms. You also need to add the necessary code to the AdvGame class
to read in all the objects and store them in a dictionary, just as you do for the rooms. It is
not an error if the Objects file is missing; a missing file just means that there are no
objects.

Your second task is to add methods to the AdvRoom class so that rooms can keep track of
the objects they contain. The easiest strategy for doing so is to keep track of the names of
the objects in the room using a Python list stored in the AdvRoom object. In keeping with
the principles of data abstractions, clients should not look at this list directly but should

 – 12 –

instead obtain that information through method calls. The following methods are
sufficient to get you through all of the milestones:

• An addObject method that takes an object name and adds it to the room contents.
• A removeObject method that takes an object name and removes it from the contents.
• A containsObject method that checks whether an object name is in the room.
• A getContents method that returns a copy of the set of object names.

The third task is to change the initialization code in the run method for AdvGame so that it
places the objects in the appropriate rooms. This code should iterate through the
dictionary containing all the objects and then call addObject on behalf of each object and
place it in the room specified by its initial location. Your code should simply skip over
any objects whose location is PLAYER until you implement Milestone #5.

The fourth and final task is to extend the code that describes a room so that it also prints
out the descriptions of the objects contained in that room. The objects are listed on single
lines, one for each object that the room contains.

Because Milestone #4 does not yet allow you to pick up and drop objects, the only thing
you can do to test whether this part of the project works is to check and see whether the
objects are listed as part of the room descriptions. For example, you should make sure
that the keys are listed inside the building, as shown in the following console session:

Milestone #5: Implement the TAKE, DROP, and INVENTORY commands

The next step is to add the TAKE, DROP, and INVENTORY commands to the collection you
already implemented for Milestone #3. The TAKE command checks to see if an object is
in the room, and if so, removes it from the room and adds it to the player’s inventory. The
DROP command reverses the process, removing an object from the player’s inventory and
then adding that object to the room. The INVENTORY command goes through the player’s
inventory and prints the description of each object. If the player’s inventory is empty, the
INVENTORY command should display the string "You are empty-handed". These
behaviors are illustrated in the following sample run from the beginning of the game:

 – 13 –

Implementing this milestone requires several steps:

• Add a new attribute to the AdvGame class that keeps track of the set of objects the
player is carrying.

• Implement the special case for "PLAYER" in the code you wrote for Milestone #4.
• Write the code to implement the TAKE, DROP, and INVENTORY commands. Note that

TAKE and DROP require you to read an object name using the token scanner.

Milestone #6: Implement synonyms

At this point in your implementation, your debugging sessions will have you wandering
through the Adventure game more than you did in the beginning. As a result, you will
almost certainly find it convenient to implement the synonym mechanism, so that you can
type N, S, E, and W instead of the full names for the compass directions. The format of the
Synonyms file is described in Section 2.

To implement the synonym processing, you need to read through the Synonyms file and
create a dictionary in the AdvGame class that contains the synonym definitions. Whenever
you read a word—which might be a motion verb, an action verb, or the name of an
object—you need to see if that word exists in the synonym table and, if so, substitute the
standard definition.

 – 14 –

As with the Objects file, it is not an error if the Synonyms file is missing. In that case,
the synonym dictionary should just be empty.

Milestone #7: Implement locked passages

When you modified the teaching machine code for Milestone #1, you presumably defined
the structure representing passages to be a dictionary that maps direction names to room
names. That is, after all, how the teaching machine worked, and this handout didn’t give
you any reason to change that model.

Unfortunately, using a dictionary doesn’t quite work for the Adventure game. If you look
closely at the list of passages in the SmallRooms.txt and Crowther.txt, you will
discover that certain rooms include the same direction name more than once in the list.
For example, the entry for the room above the grate that leads to the underground part of
the cave looks like this:

OutsideGrate
Outside grate
You are in a 20-foot depression floored with bare dirt. Set into
the dirt is a strong steel grate mounted in concrete. A dry
streambed leads into the depression from the north.

NORTH: SlitInRock
UP: SlitInRock
DOWN: BeneathGrate/KEYS
DOWN: MissingKeys

As you can see, the motion verb "DOWN" appears twice in the list of passages. The first
one ends with a slash and the word KEYS, which indicates that the object whose name is
"KEYS" is required to traverse this passage. The second has no such modifier, which
means that the passage is always available. This definition is an example of a locked
passage, which is one that requires the player to be holding a specified object that is
called its key. In this case, the key is literally the set of keys that starts off inside the
building. If the keys are in the player’s inventory, applying the motion verb DOWN uses
the first passage; if not, applying DOWN skips over that passage and follows the one to the
room named "MissingKeys", which is described in Milestone #8.

This new interpretation requires you to change the implementation of the data structure
used to represent passages, since a dictionary doesn’t allow multiple values with the same
key. What you need to do is change the data structure used to represent the passages from
a dictionary to an array in which the individual elements are themselves tuples1

1 Tuples are little more than immutable lists. If a list of length three called passage is equal to
["DOWN", "BeneathGrate", "KEYS"], and passage[0] would be used to access the value
"DOWN", then the same trio of information could be stored in a tuple, as with passage = ("DOWN",
"BeneathGrate", "KEYS"), where passage[0] would still evaluate to "DOWN". The advantage
of the latter is that it dictates a sequence to be read-only, so operations like append, insert, remove,
etc. aren’t supported. The tuple is discussed in Section 9.1 of the Python reader, and is a better choice here
over the list, since the triple of information modeling a passage never needs to change once constructed.

 – 15 –

containing three values: the direction name, the name of the destination room, and the
key required to traverse the passage, which may be None. The code that moves from one
room to another based on the player’s input must search through the array to find the first
option that applies.

The changes you need to make for Milestone #7 are in the AdvRoom and AdvGame classes.
You will, for example, have to change your implementation of readRoom so that it stores
the data for the passages in an array rather than a dictionary. You also need to change the
way that the getNextRoom method works, since this method now has to take account of
what the player is carrying. That requirement, however, creates a bit of a problem. The
AdvRoom class doesn’t know what the player is carrying, since that information is
available only inside the AdvGame class.

There are several strategies you might use to solve this problem. One possibility is to pass
the player’s inventory—along with the map from object names to AdvObject
structures—as additional arguments to the getNextRoom method. On the whole, however,
it is probably simpler to reassign the task of figuring out the which room you reach after
moving in a particular direction into the AdvGame class, which already has the necessary
information. Doing so requires making the structure containing the array of passages
available to clients of AdvRoom, which is easily done by adding a getPassages method to
the class.

Once you have implemented this change, you should be able to explore the entire
Adventure game, picking up objects and using them as keys to get through previously
closed passages. You still, however, won’t be able to escape if you try to go through a
locked passage without the necessary key. For that, you need to implement the final
milestone.

Milestone #8: Implement forced motion
When the player tries to go through a locked passage without the necessary key, the game
has to indicate that the motion is prohibited. One possible strategy would be to design a
whole new data structure to represent messages of this type. A simpler way, however, is
to make a small extension to the structure that is already in place.

When Willie Crowther faced this problem in his original Adventure game, he chose the
simple approach. He simply created new rooms whose descriptions contained the
messages he wanted to deliver. When the player entered one of those rooms, the code
that you’ve been running all along would print out the necessary message, just like any
other room description. The only problem is that you don’t actually want the player to
end up in that room, but rather to be moved automatically to some other room. To
implement this idea, Crowther came up with the idea of using a special motion verb
called "FORCED" to specify forced motion.

Whenever the player ever enters a room in which one of the connections is associated
with the motion verb FORCED (and the player is carrying any object that the FORCED verb
requires to unlock the passage), your program should display the long description of that

 – 16 –

room and then immediately move the player to the specified destination without waiting
for the player to enter a command. This feature makes it possible to display a message to
the player and continue on from there.

This facility is illustrated by the room named "MissingKeys", which has the following
definition:

MissingKeys
-
The grate is locked and you don't have any keys. -----
FORCED: OutsideGrate

The effect of this definition is to ensure that whenever the player enters this room, the
room will automatically be set to "OutsideGrate".

It is possible for a single room to use both the locked passage and forced motion options.
The CrowtherRooms.txt file, for example, contains the following entry for the room just
north of the curtain in the building:

Curtain1
-

FORCED: Curtain2/NUGGET
FORCED: MissingTreasures

The effect of this set of motion rules is to force the player to the room named Curtain2
if the player is carrying the nugget and to the room named MissingTreasures
otherwise. When you are testing your code for locked and forced passages, you might
want to pay particular attention to the last eight rooms in the CrowtherRooms.txt file.
These rooms, all of which have no lines at all in their long description, implement the
shimmering curtain that marks the end of the game.

You should also notice that the rooms with forced motions do not supply a meaningful
short description, although the data files use a single hyphen so that the code to read the
file still works. Forced motion should always display the long description, which is easy
to achieve by making sure that your program sets the visited flag only after the forced
motion is complete.

Deliverables

You only need to submit the four .py files you need to modify to build a working
Adventure program as specified by this handout. If you plan on submitting an entry for
the Adventure Contest, you should still submit an unembellished version that conforms to
the standard specification so we can grade that. More details about the Adventure Contest
will be distributed on Monday.

