
Jerry Cain Handout #22
CS 106AX November 17th, 2023

Assignment #7—Match the Flag

This week’s assignment marks our return to pure JavaScript, as you’ll implement a small,
easily described game that relies on your understanding of HTML, CSS, and your ability
to programmatically analyze and perform surgery on the DOM tree.

The amount of code that needs to be written is in line with the amount that was needed
for Assignments 2 and 3. In particular, this assignment, while hardly trivial, lacks the heft
and gravity of the more elaborate Enigma, Reassemble, and Adventure assignments. We
recognize you’re all swamped and working very hard, so we’re hoping this assignment is
easier—particularly given the break that really should be a break—withouth sacrificing
academic rigor.

Due: Friday, December 1st, 5:00 P.M.

The Game
Match the Flags is a memory game where a single player is presented with a 4x4 grid of
concealed images, like so:

Each image is one of eight different flags, so each image is present not once, but twice.
The goal of the game is to click on squares to reveal flags and match pairs.

For instance, clicking the upper left square and the one below it would reveal two images,
as with:

When the two selections mismatch as they do above, you’re given one second to commit
the exposed images to memory before their covers are restored.

after first click after second click after one second delay

 – 2 –

The next pair of clicks might reveal another mismatch:

Of course, now you’ve seen both Chinese flags, so you’d surely click to reveal each of
them a second time. Once the two have been exposed, you’re given one second to relish
your tiny victory before the two images are removed from the screen.

The player continues to expose pairs of matching flags—presumably with intermittent
mismatches I don’t bother to show—until all pairs have been matched.

For this assignment, you’re to implement a program to include the mouse event and timer
functionality needed to realize the full game experience. You’re to do this without the
services of the CS106AX graphics library. Instead, you’re to leverage your recently acquired
understanding of the DOM and how to manipulate it via JavaScript code.

The Program
The starter code includes one HTML file, one CSS file, and two JavaScript files. The HTML
file is short, as it just defines a skeletal structure you’ll immediately modify once your
JavaScript program gets a change to load and execute.

after first click after second click after one second delay

after first click after second click after one second delay

 – 3 –

That HTML file is presented right here:

As you can see, all you get is an empty div that’s programmatically discoverable through its
id attribute.

The CSS file is also very small, as it only defines rules for body, div, and img tags. As far as
CSS files go, it’s so easily ignored that I won’t even present it here. You can just assume the
CSS rules do what they need to do for you. There are no class or id selectors, so you won’t
need to add and remove any class attributes or classList properties for this particular
application.

The first of the two JavaScript files is called match-the-flag-constants.js, and a
minified, uncommented version of it looks like this:

The COUNTRIES array names the eight countries whose flags contribute to the game. Of

 – 4 –

course, you need each country to be represented twice in any given play, so all of the images
needed for each of the eight countries reside in a subfolder called images. The image names
are just the country names, except that image names are all lowercase. That means that
"images/finland.png" is an image of Finland’s flag, "images/greece.png" is an image
of Greece’s flag, as so forth. (Note that these filenames are all lowercase, even though the
COUNTRIES array has proper capitalization.)

You’ll also notice that I have two other named images.

The cover image, as it’s called, is pretty dull. It’s just a solid gray swatch that can be used in
place of an actual flag when the flag is concealed. The second one is even more dull that the
first! It’s a fully transparent image—that is, it’s totally see-through. The second one is
useful, because I don’t actually want to remove img nodes from the window, since other
images would move to close any gaps and destroy the stable 4x4 grid structure. We can,
however, give the impression that an image has been removed by replacing that image with a
see-through one. That’s what this second image is for.

Suggested Milestones
Here's a series of milestones you should work through to arrive at a working product as
efficiently as possible:

1. Create an array of 16 flag image filenames, as strings, two for each country, and
scramble it using the provided shuffle function. The shuffle function relies on some
basic probability to ensure that all possible permutations are equally likely.

2. Create 16 img nodes on behalf of each entry in the array and insert each in turn to the

one div where all images belong. The CSS is set up so that images flow left to right
just as we read, say, assignment handouts, and the width and height of the div are set
so that the image flow ends up being a perfect 4x4 grid.

Don’t worry about event handling just yet. Just get those images to show up in their
full glory. Create img nodes using document.createElement, and set image sources
by calling element.setAttribute("src", imageName).

3. Update the code you wrote for the second milestone so that each image shows up as a
gray square instead of a flag. This will require replacing the image filename in the
src attribute with the gray square filename, so you should add a new data-country-
image attribute that contains the original image name. That way, you can easily
replace the dull gray image with the original country image when the square is
clicked. You can always retrieve the value of any attribute—and in particular, the
src or data-country-image attribute—by calling
element.getAttribute(attributeName).

4. Attach mouse click event listeners to each img node and implement a simple version

of the click-handling function that toggles a clicked tile between the gray and the flag
it conceals. Restated, if a tile showing a country flag is clicked, replace it with the

 – 5 –

gray image, and if a tile showing the gray image is clicked, replace it with the country
flag.

Don’t create new img nodes, or you’ll make yourself sad. Just examine and update
the src attribute of existing img nodes by relying on setAttribute and
getAttribute.

5. Now update the mouse click event callback function so that you really do play the
game. Detect all mouse clicks on image tags, though immediately return from the
callback if the src of the clicked image is anything other than the gray swatch.
Otherwise, proceed to reveal the flag, and if there are two revealed flags, then wait
one seconds before replacing the source of two images to be either gray or
transparent.

During that one second wait time, make sure you programmatically ignore any other
mouse clicks. In particular, don’t allow a third flag to be revealed by a third click
until the one second has passed.

When all covered flags have been removed, the game is over. No additional code
need be written to address the end of game. User clicks are effectively ignored, since
all flags have been matched.

That’s all! I hope you enjoy the assignment! By completing it, you’ll bolster your
understanding of JavaScript and how it can update the native data structures used by all
modern browsers to manage the presentation and interactivity of a web application!

