
Jerry Cain Handout #24S
CS 106AX November 29th, 2023

Practice Final Examination Solution

Review session: Sunday, December 11, 12:00 – 2:00P.M. (STLC 115)
Scheduled final: Monday, December 12, 8:30 – 11:30A.M. (380-380C)

Solution 1—Python Strings

def lrs(s):
 """
 Extracts every possible nonempty substring from the one
 provided and sees if each is repeated a second time.
 While doing so, we keep track of the longest such
 substring and ultimately return that substring at the end.
 """
 longest = ""
 for lh in range(0, len(s)):
 for rh in range(lh + 1, len(s)):
 subs = s[lh:rh]
 if len(subs) > len(longest) and s[lh + 1:].find(subs) != -1:
 longest = subs
 return longest

Solution 2—Python Strings and Lists

ALPHABET = "abcdefghijklmnopqrstuvwxyz"
def transform(str):

 """
 Encrypts the provided string of lowercase letters to an
 array of offsets according the problem specification.
 """
 offsets = []
 legend = ALPHABET
 for ch in str:
 pos = legend.find(ch)
 offsets.append(pos)
 legend = ch + legend[:pos] + legend[pos + 1:]
 return offsets	

 – 2 –

Solution 3—Working with Python Dictionaries and Objects
def printCheatSheet(objects, rooms):
 """
 Analyzes the specific dictionary of objects (keys are object names,
 values are instances of AdvObject) and the dictionary of rooms (keys
 are room names, values are instances of AdvRoom) and publishes a little
 cheat sheet to the console, as per the problem specification.
 """
 for objName in objects:
 obj = objects[objName]
 objDesc = obj.getDescription()
 objLocation = obj.getInitialLocation()
 if objLocation != "PLAYER":
 objLocation = rooms[objLocation].getShortDescription()
 print("{} ({}) starts: {}".format(objName, objDesc, objLocation))
 for roomName in rooms:
 room = rooms[roomName]
 for passage in room.getPassages():
 if passage[2] == objName:
 verb = passage[0]
 desc = room.getShortDescription()
 print(" Needed for {} from {}".format(verb, desc))

Solution 5—Client-Side JavaScript [Solution 4 on next page]
/*
 * Function: fetchAndLoadImages
 * ----------------------------
 * Issues an asynchronous request to fetch the names
 * and image URLs of all of the users. We ignore the
 * names, but use the image URLs to construct a small
 * HTML component with all those images laid down side-by-side.
 */
function fetchAndLoadImages() {
 AsyncRequest("/api/images")
 .setSuccessHandler(loadImages)
 .send();
}

/*
 * Function: loadImages
 * --------------------
 * Invoked when GET request initiated by fetchAndLoadImages is
 * issued and the server has responded.
 */
function loadImages(response) {
 let images = JSON.parse(response.getPayload());
 let div = document.getElementById("user-images");
 for (let i = 0; i < images.length; i++) {
 let img = document.createElement("img");
 img.setAttribute("src", images[i].url);
 img.setAttribute("alt", images[i].name);
 img.classList.push("thumbnail");
 div.appendChild(img);
 }
}

 – 3 –

Solution 4—Defining Python Classes and Reading Files
class ElectionData:
 """
 Defines a new type that understands how to read a flat-text
 file of election data and surface information about the
 various British government system's constituencies.
 """
 def __init__(self, filename):
 """
 Constructs the ElectionData object from the information
 provided in the named file, as per the problem description.
 The implementation, as permitted, assumes the file exists and
 that its contents are perfectly formatted.
 """
 self._constituencyNames = []
 self._results = {}
 with open(filename) as infile:
 while True:
 constituency = infile.readline().strip()
 if constituency == "": break
 self._constituencyNames.append(constituency)
 results = []
 while True:
 line = infile.readline().strip()
 if line == "": break
 entry = {}
 opos = line.find("(")
 cpos = line.find(")")
 entry["candidate"] = line[:opos].strip()
 entry["party"] = line[opos + 1: cpos].strip()
 entry["votes"] = int(line[cpos + 1:].strip())
 results.append(entry)
 self._results[constituency] = results

 def getConstituencyNames(self):
 """
 Returns the list of constituencies.
 """
 return self._constituencyNames

 def getResults(self, constituency):
 """
 Returns the election results for the named constituency
 as an array of aggregates, as outlined in the problem
 statement.
 """
 return self._results.get(constituency, [])

