
JavaScript Basics

Jerry Cain
CS 106AX

September 29, 2023
slides leveraged from those written by Eric Roberts

Control Statements

Statement Types in JavaScript
• Statements in JavaScript fall into three basic types:

– Simple statements
– Compound statements
– Control statements

• Simple statements are typically assignments, function calls, or
applications of the ++ or -- operators. Simple statements are
always terminated with a semicolon.

• Compound statements (also called blocks) are sequences of
statements enclosed in curly braces.

• Control statements fall into two categories:
– Conditional statements that require some test be evaluated
– Iterative statements that specify repetition

Boolean Expressions
• JavaScript defines two types of operators that work with

Boolean data: relational operators and logical operators.
• There are six relational operators that compare values of other

types and produce a true/false result:
= == Equals
< Less than

!== Not equals
<= Less than or equal to
>= Greater than or equal to> Greater than

For example, the expression n <= 10 has the value true if n is
less than or equal to 10 and the value false otherwise.

p || q means either p or q (or both)

• There are also three logical operators:
&& Logical AND
|| Logical OR
! Logical NOT

p && q means both p and q

!p means the opposite of p

Notes on the Boolean Operators
• Remember that JavaScript uses = for assignment. To test

whether two values are equal, you must use the = = = operator.

• The || operator means either or both, which is not always
clear in the English interpretation of or.

• It is not legal in JavaScript to use more than one relational
operator in a single comparison. To express the idea
embodied in the mathematical expression

0 ≤ x ≤ 9

0 <= x && x <= 9

you need to make both comparisons explicit, as in

• Be careful when you combine the ! operator with && and ||
because the interpretation often differs from informal English.

Short-Circuit Evaluation
• JavaScript evaluates the && and || operators using a strategy

called short-circuit mode in which it evaluates the right
operand only if it needs to do so.

• One of the advantages of short-circuit evaluation is that you
can use && and || to prevent errors. If n were 0 in the earlier
example, evaluating x % n would result in a division by zero.

• For example, if n is 0, the right operand of && in
n !== 0 && x % n === 0

is not evaluated at all because n !== 0 is false. Because the
expression

false && anything

is always false, the rest of the expression no longer matters.

The if Statement

if (condition) {
 statements to be executed if the condition is true
}

• The simplest of the control statements is the if statement,
which occurs in two forms. You use the first when you need
to perform an operation only if a particular condition is true:

if (condition) {
 statements to be executed if the condition is true
} else {
 statements to be executed if the condition is false
}

• You use the second form whenever you need to choose
between two alternative paths, depending on whether the
condition is true or false:

Functions Involving Control Statements
• The body of a function can contain statements of any type,

including control statements. As an example, the following
function uses an if statement to find the larger of two values:

function max(x, y) {
 if (x > y) {
 return x;
 } else {
 return y;
 }
}

• As this example makes clear, return statements can be used
at any point in the function and may appear more than once.

The switch Statement
The switch statement provides a convenient syntax for choosing
among a set of possible paths:

switch (expression) {
 case v1:
 statements to be executed if expression = v1
 break;
 case v2:
 statements to be executed if expression = v2
 break;
 . . . more case clauses if needed . . .
 default:
 statements to be executed if no values match
 break;
}

switch (expression) {
 case v1:
 statements to be executed if expression is equal to v1
 break;
 case v2:
 statements to be executed if expression is equal to v2
 break;
 . . . more case clauses if needed . . .
 default:
 statements to be executed if no values match
 break;
}

JavaScript evaluates statements in the case or default clause
until it reaches a break or a return statement.
If none of the values in the case clauses match the expression,
JavaScript evaluates the statements in the default clause.
JavaScript then looks for a case clause that matches expression.
If expression is equal to v2, JavaScript chooses the second clause.
When JavaScript executes a switch statement, it begins by
evaluating expression.
The switch statement provides a convenient syntax for choosing
among a set of possible paths:

Example of the switch Statement

function monthName(month) {
 switch (month) {
 case 1: return "January";
 case 2: return "February";
 case 3: return "March";
 case 4: return "April";
 case 5: return "May";
 case 6: return "June";
 case 7: return "July";
 case 8: return "August";
 case 9: return "September";
 case 10: return "October";
 case 11: return "November";
 case 12: return "December";
 default: return undefined;
 }
}

The switch statement is useful when a function must choose
among several cases, as in the following example:

The while Statement

while (condition) {
 statements to be repeated
}

while (condition) {
 statements to be repeated
}

• The while statement is the simplest of JavaScript’s iterative
control statements and has the following form:

• When JavaScript encounters a while statement, it begins by
evaluating the condition in parentheses.

• If the value of condition is true, JavaScript executes the
statements in the body of the loop.

• At the end of each cycle, JavaScript reevaluates condition to
see whether its value has changed. If condition evaluates to
false, JavaScript exits from the loop and continues with the
statement following the end of the while body.

The digitSum Function

n result
1729n sum
1729 09172 1117 181 190

19

digitSum(1729) = 19

The for Statement

for (init ; test ; step) {
 statements to be repeated
}

Evaluate init, which typically declares a control variable.1.
Evaluate test and exit from the loop if the value is false.2.
Execute the statements in the body of the loop.3.
Evaluate step, which usually updates the control variable.4.
Return to step 2 to begin the next loop cycle.5.

for (init ; test ; step) {
 statements to be repeated
}

• The for statement in JavaScript is a powerful tool for
specifying the structure of a loop independently from the
operations the loop performs. The syntax looks like this:

• JavaScript evaluates a for statement as follows:

Exercise: Reading for Statements
Describe the effect of each of the following for statements:

This statement executes the loop body ten times, with the control
variable i taking on each successive value between 1 and 10.

for (let i = 1; i <= 10; i++)1.

This statement executes the loop body n times, with i counting from
0 to n - 1. This version is the standard Repeat-n-Times idiom.

for (let i = 0; i < n; i++)2.

This statement counts backward from 99 to 1 by twos.

for (let n = 99; n >= 1; n -= 2)3.

This statement executes the loop body with the variable x taking on
successive powers of two from 1 up to 1024.

for (let x = 1; x <= 1024; x *= 2)4.

The factorial Function
• The factorial of a number n (which is usually written as n! in

mathematics) is defined to be the product of the integers from
1 up to n. Thus, 5! is equal to 120, which is 1 x 2 x 3 x 4 x 5.

function fact(n) {
 let result = 1;
 for (let i = 1; i <= n; i++) {
 result = result * i;
 }
 return result;
}

• The following function definition uses a for loop to compute
the factorial function:

The factorialTable Function

-> factorialTable(0, 7);

min max i
0 7 0n result i
0 1 1

1

0! = 1

1

1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720

67n result i
7 1 11 22 36 424 5120 6720 75040 8

5040

7! = 5040

8

->

Comparing for and while

for (init ; test ; step) {
 statements to be repeated
}

init;
while (test) {
 statements to be repeated
 step;
}

• The for statement

is functionally equivalent to the following code using while:

• The advantage of the for statement is that everything you
need to know to understand how many times the loop will run
is explicitly included in the header line.

Functions Mechanics

A Quick Review of Functions
• The concept of a function should be familiar to you from prior

programming experience. All modern programming
languages allow functions to be defined.

• At the most basic level, a function is a sequence of statements
that has been grouped together and given a name. The name
makes it possible to execute that sequence of statements much
more easily. Instead of copying out the entire list of
statements, you can just provide the function name.

• The following terms are useful when working with functions:
– Invoking a function by name is known as calling that function.
– The caller passes information to a function using arguments.
– When a function completes its operation, it returns to its caller.
– A function gives information to the caller by returning a result.

Review: Syntax of Functions
• The general form of a function definition is

function name(parameter list) {
 statements in the function body
}

where name is the name of the function, and parameter list is
a list of variables used to hold the values of each argument.

• You can return a value from a function by including one or
more return statements, which are usually written as

return expression;

where expression is an expression that specifies the value you
want to return.

Nonnumeric Functions
• Although functions return a single value, that value can be of

any type.

• Even without learning the full range of string operations
covered in Chapter 7, you can already write string functions
that depend only on concatenation, such as the following
function that concatenates together n copies of the string str:

function concatNCopies(n, str) {
 let result = "";
 for (let i = 0; i < n; i++) {
 result += str;
 }
 return result;
}

Exercise: Console Pyramid
• Write a program that uses the concatNCopies function to

display a pyramid on the console in which the bricks are
represented by the letter x. The number of levels in the
pyramid should be defined as the constant N_LEVELS.

• For example, if N_LEVELS is 10, the console output should
look like this:

ConsolePyramid
x

 xxx
 xxxxx
 xxxxxxx
 xxxxxxxxx
 xxxxxxxxxxx
 xxxxxxxxxxxxx
 xxxxxxxxxxxxxxx
 xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx

Predicate Functions
• Functions that return Boolean values play a central role in

programming and are called predicate functions. As an
example, the following function returns true if the first
argument is divisible by the second, and false otherwise:

 function isDivisibleBy(x, y) {
 return x % y === 0;
}

• Once you have defined a predicate function, you can use it
any conditional expression. For example, you can print the
integers between 1 and 100 that are divisible by 7 as follows:

for (let i = 1; i <= 100; i++) {
 if (isDivisibleBy(i, 7)) {
 println(i);
 }
}

Using Predicate Functions Effectively
• New programmers often seem uncomfortable with Boolean

values and end up writing ungainly code. For example, a
beginner might write isDivisibleBy like this:

function isDivisibleBy(x, y) {
 if (x % y === 0) {
 return true;
 } else {
 return false;
 }
}

• A similar problem occurs when novices explicitly check to
see whether a predicate function returns true. You should be
careful to avoid such redundant tests in your own programs.

While this code is technically correct, it is inelegant and
should be replaced by return x % y === 0.

The Purpose of Parameters

• In general, functions perform some service to their callers. In
order to do so, the function needs to know any details
required to carry out the requested task.

• Imagine that you were working as a low-level animator at
Disney Studies in the days before computerized animation
and that one of the senior designers asked you to draw a filled
circle. What would you need to know?

• At a minimum, you would need to know where the circle
should be placed in the frame, how big to make it, and what
color it should be. Those values are precisely the information
conveyed in the parameters.

“All right, Mr. Wiseguy,” she said, “you’re so clever,
you tell us what color it should be.”

Douglas Adams, The Restaurant
at the End of the Universe, 1980

—

Libraries
• To make programming easier, all modern languages include

collections of predefined functions. Those collections are
called libraries.

• For programming that involves mathematical calculations, the
most useful library is the Math library, which includes a
number of functions that will be familiar from high-school
mathematics (along with many that probably aren’t). A list of
the most important functions appears on the next slide.

• In JavaScript, each of the functions in the Math library begins
with the library name followed by a dot and then the name of
the function. For example, the function that calculates square
roots is named Math.sqrt.

• You call library functions just like any other function, so that
calling Math.sqrt(16) returns the value 4.

Useful Functions in the Math Library

Math.abs(x)
Math.max(x, y, . . .)
Math.min(x, y, . . .)
Math.round(x)
Math.floor(x)
Math.log(x)

Math.pow(x, y)
Math.sin(q)
Math.cos(q)
Math.sqrt(x)

Math.PI
Math.E

Math.exp(x)

The mathematical constant π
The mathematical constant e
The absolute value of x
The largest of the arguments
The smallest of the arguments
The closest integer to x
The largest integer not exceeding x
The natural logarithm of x
The inverse logarithm (e x)
The value x raised to the y power (x y)
The sine of q, measured in radians
The cosine of q, measured in radians
The square root of x

Math.random() A random value between 0 and 1

Decomposition

Decomposition
• The most effective way to solve a complex problem is to

break it down into successively simpler subproblems.

• You start by breaking the whole task down into simpler parts.
• Some of those tasks may themselves need subdivision.
• This process is called stepwise refinement or decomposition.

Complete Task

Subtask #1 Subtask #2 Subtask #3

Subsubtask #2a Subsubtask #2b

Criteria for Choosing a Decomposition
The proposed steps should be easy to explain. One
indication that you have succeeded is being able to find
simple names.

1.

The steps should be as general as possible. Programming
tools get reused all the time. If your methods perform
general tasks, they are much easier to reuse.

2.

The steps should make sense at the level of abstraction at
which they are used. If you have a method that does the
right job but whose name doesn’t make sense in the context
of the problem, it is probably worth defining a new method
that calls the old one.

3.

Exercise: Ruth-Aaron Pairs
• Write a program that lists the first NUM_PAIRS Ruth-Aaron

pairs. In recreational mathematics, a Ruth-Aaron pair
consists of two neighboring integers—e.g. 714 and 715—for
which the sum of the distinct prime factors of each are equal.

• The pairs are named Ruth-Aaron as a nod to baseball greats
Babe Ruth and Hank Aaron. Ruth held the record for most
career home runs at 714 until
Aaron’s hit his 715th on
April 8th, 1974.

• If NUM_PAIRS equals 15, the
program should publish the
output presented on the right.

The End

