
JavaScript Graphics

Jerry Cain
CS 106AX

October 2, 2023
slides leveraged from those written by Eric Roberts

JavaScript Graphics
• In addition to JSConsole.js, CS 106AX provides a library

called JSGraphics.js that makes it easy to create graphical
programs.

• The structure of the index.html file for graphics programs is
like the one used for HelloWorld. The BlueRectangle
program introduced later uses the following index.html:

<!DOCTYPE html>
<html>
 <head>
 <title>Blue Rectangle</title>
 <script type="text/javascript" src="JSGraphics.js"></script>
 <script type="text/javascript" src="BlueRectangle.js"></script>
 </head>
 <body onload="BlueRectangle()"></body>
</html>

The Graphics Model
• The JSGraphics.js library uses a graphics model based on

the metaphor of a collage.
• A collage is akin to a child’s felt board that serves as a

backdrop for colored shapes that stick to the felt surface. As
an example, the following diagram illustrates the process of
adding a blue rectangle and a red oval to a felt board:

• Note that new objects potentially obscure those added earlier.
This layering arrangement is called the stacking order.

The BlueRectangle Program
function BlueRectangle() {
 let gw = GWindow(500, 200);
 let rect = GRect(150, 50, 200, 100);
 rect.setColor("Blue");
 rect.setFilled(true);
 gw.add(rect);
}

BlueRectangle

rect

function BlueRectangle() {
 let gw = GWindow(500, 200);
 let rect = GRect(150, 50, 200, 100);
 rect.setColor("Blue");
 rect.setFilled(true);
 gw.add(rect);
}

rect

The JavaScript Coordinate System

• Positions and distances on the screen are measured in terms of
pixels, which are the small dots that cover the screen.

• Unlike traditional mathematics, JavaScript defines the origin
of the coordinate system to be in the upper left corner. Values
for the y coordinate increase as you move downward.

pixels
(0, 0)

(150, 50)

200 pixels

10
0

pi
xe

ls

BlueRectangle

Systems of Classification

Carl Linnaeus (1707–1778)

• In the mid-18th century, the
Scandinavian botanist Carl Linnaeus
revolutionized the study of biology
by developing a new system for
classifying plants and animals in a
way that revealed their structural
relationships and paved the way for
Darwin’s theory of evolution a
century later.

• Linnaeus’s contribution was to
recognize that organisms fit into a
hierarchy in which the placement of
individual species reflects their
anatomical similarities.

Biological Class Hierarchy

Crustacea ArachnidaInsecta

Annelida Brachiopoda Mollusca ChordataArthropoda

Plants FungiAnimals

Living ThingsLiving Things

Animals

Arthropoda

Insecta

Hymenoptera

Formicidae

Iridomyrmex

purpureus

Kingdom

Phylum

Order

Class

Family

Genus

Species

Classification of the red ant
Iridomyrmex purpureus

Every red ant is also an animal,
an arthropod, and an insect, as
well as the other superclasses in
the chain.

Instances vs. Patterns
Drawn after you, you pattern of all those.

—William Shakespeare, Sonnet 98

• In thinking about any classification scheme—biological or
otherwise—it is important to draw a distinction between a
class and specific instances of that class. In the most recent
example, the designation Iridomyrmex purpureus is not itself
an ant, but rather a class of ant. There can be (and usually
are) many ants, each of which is an individual of that class.

• Each of these fire ants is an instance of a particular class of
ants. Each instance is of the species purpureus, the genus
Iridomyrmex, the family Formicidae (which makes it an ant),
and so on. Thus, each ant is not only an ant, but also an
insect, an arthropod, and an animal.

The GObject Hierarchy

GObject

GRect GOval GLine

• The classes that represent graphical objects form a hierarchy,
part of which looks like this:

• The GObject class represents the collection of all graphical
objects.

• The three subclasses shown in this diagram correspond to
particular types of objects: rectangles, ovals, and lines. Any
GRect, GOval, or GLine is also a GObject.

Creating a GWindow Object
• The first step in writing a graphical program is to create a

window using the following function declaration, where width
and height indicate the size of the window:

let gw = GWindow(width, height);

gw.add(object)
Adds an object to the window.

gw.remove(object)
Removes the object from the window.

gw.add(object, x, y)
Adds an object to the window after first moving it to (x, y).

gw.getWidth()
Returns the width of the graphics window in pixels.

gw.getHeight()
Returns the height of the graphics window in pixels.

• The following operations work with any GWindow object:

Operations on the GObject Class

object.getX()
Returns the x coordinate of this object.

• The following operations apply to all GObjects:

• All coordinates and distances are measured in pixels.
• Each color is a string, such as "Red" or "White". The names

of the standard colors are defined in Figure 4-5 on page 125.

object.getY()
Returns the y coordinate of this object.

object.getWidth()
Returns the width of this object.

object.getHeight()
Returns the height of this object.

object.setColor(color)
Sets the color of the object to the specified color.

Drawing Geometrical Objects
Functions to create geometrical objects:
GRect(x, y, width, height)

Creates a rectangle whose upper left corner is at (x, y) of the specified size.
GOval(x, y, width, height)

Creates an oval that fits within a rectangle with the same dimensions.

Methods shared by the GRect and GOval classes:
object.setFilled(fill)

If fill is true, fills in the interior of the object; if false, shows only the outline.

object.setFillColor(color)
Sets the color used to fill the interior, which can be different from the border.

GLine(x0, y0, x1, y1)
Creates a line extending from (x0, y0) to (x1, y1).

The GRectPlusGOval Program
function GRectPlusGOval() {
 let gw = GWindow(500, 200);
 let rect = GRect(150, 50, 200, 100);
 rect.setFilled(true);
 rect.setColor("Blue");
 gw.add(rect);
 let oval = GOval(150, 50, 200, 100);
 oval.setFilled(true);
 oval.setColor("Red");
 gw.add(oval);
}

GRectPlusGOval

ovalrect

function GRectPlusGOval() {
 let gw = GWindow(500, 200);
 let rect = GRect(150, 50, 200, 100);
 rect.setFilled(true);
 rect.setColor("Blue");
 gw.add(rect);
 let oval = GOval(150, 50, 200, 100);
 oval.setFilled(true);
 oval.setColor("Red");
 gw.add(oval);
}

ovalrect

The DrawDiagonals Program
/* Constants */

const GWINDOW_WIDTH = 500;
const GWINDOW_HEIGHT = 200;

function DrawDiagonals() {
 let gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT);
 gw.add(GLine(0, 0, GWINDOW_WIDTH, GWINDOW_HEIGHT));
 gw.add(GLine(0, GWINDOW_HEIGHT, GWINDOW_WIDTH, 0));
}

DrawDiagonals

/* Constants */

const GWINDOW_WIDTH = 500;
const GWINDOW_HEIGHT = 200;

function DrawDiagonals() {
 let gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT);
 gw.add(GLine(0, 0, GWINDOW_WIDTH, GWINDOW_HEIGHT));
 gw.add(GLine(0, GWINDOW_HEIGHT, GWINDOW_WIDTH, 0));
}

The Checkerboard Program
const GWINDOW_WIDTH = 500; /* Width of the graphics window */
const GWINDOW_HEIGHT = 300; /* Height of the graphics window */
const N_COLUMNS = 8; /* Number of columns */
const N_ROWS = COLUMNS; /* Number of rows */
const SQUARE_SIZE = 35; /* Size of a square in pixels */

function Checkerboard() {
 let gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT);
 let x0 = (gw.getWidth() - N_COLUMNS * SQUARE_SIZE) / 2;
 let y0 = (gw.getHeight() - N_ROWS * SQUARE_SIZE) / 2;

 for (let i = 0; i < N_ROWS; i++) {
 for (let j = 0; j < N_COLUMNS; j++) {
 let x = x0 + j * SQUARE_SIZE;
 let y = y0 + i * SQUARE_SIZE;
 let sq = GRect(x, y, SQUARE_SIZE, SQUARE_SIZE);
 let filled = (i + j) % 2 !== 0;
 sq.setFilled(filled);
 gw.add(sq);
 }
 }
}

Creating Compound Objects
• The GCompound class makes it possible to combine and layer

several graphical objects so that the resulting structure
behaves as a single GObject.

• The easiest way to think about the GCompound class is as a
combination of a GWindow and a GObject. A GCompound is
like a GWindow in that you can add objects to it, but it is also
like a GObject in that you can add it to a graphics window.

• A GCompound object has its own coordinate system that is
expressed relative to a reference point that you invent. When
you add new objects to the GCompound, you use the local
coordinate system based on that reference point. When you
add the GCompound to the graphics window, all you have to do
is set the location of the reference point, and then the
individual components will automatically appear in the right
locations relative to that point.

Using a GCompound class

gw

box

w h

box

200 100

DrawCrossedBox

The End

