
Arrays In JavaScript

Jerry Cain
CS 106AX

October 13, 2023
slides leveraged from those constructed by Eric Roberts

Simple Arrays
• An array is a collection of individual data values in which it

is possible to count the values off in order: here is the first,
here is the second, and so on.

• The individual values in an array are called elements. The
number of elements is called the length of the array. As with
strings, you can determine the length of an array by checking
its length property.

• Each element is identified by its position within the array,
which is called its index.

• In JavaScript, index numbers always begin with 0 and extend
up to one less than the length of the array.

Creating an Array
• The simplest way to create an array in JavaScript is to list the

elements of the array surrounded by square brackets and
separated by commas. For example, the declaration

creates a constant array of six elements that correspond to the
standard coins available in the United States.

• Arrays are commonly represented conceptually as a series of
numbered boxes, as in the following representation of
COIN_VALUES:

const COIN_VALUES = [1, 5, 10, 25, 50, 100];

1 5 10 25

0 1 2 3 4 5

COIN_VALUES

50 100

Nonnumeric Arrays
• Arrays may contain values of any JavaScript type. For

example, the declaration

creates the following array:

const COIN_NAMES = [
 "penny",
 "nickle",
 "dime",
 "quarter",
 "half-dollar",
 "dollar"
];

"penny" "nickel" "dime" "quarter"

0 1 2 3 4 5

COIN_NAMES

"half-
dollar"

"dollar"

Array Selection
• Given an array, you can get the value of any element by

writing the index of that element in brackets after the array
name. This operation is called selection.

• For example, given the declarations on the preceding slides,
the value of COIN_VALUES[3] is 25.

• Similarly, the value of COIN_NAMES[2] is the string "dime".

1 5 10 25

0 1 2 3 4 5

COIN_VALUES

50 100

"penny" "nickel" "dime" "quarter"

0 1 2 3 4 5

COIN_NAMES

"half-
dollar" "dollar"

Cycling through Array Elements
• One of the most useful array idioms is cycling through each

of the elements of an array in turn. The standard for loop
pattern for doing so looks like this:

function sumArray(array) {
 let sum = 0;
 for (let i = 0; i < array.length; i++) {
 sum += array[i];
 }
 return sum;
}

• As an example, the following function computes the sum of
the elements in array:

for (let i = 0; i < array.length; i++) {
 Operations involving the ith element of the array
}

Exercise: Making Change
• Write a function makeChange(change) that displays the

number of coins of each type necessary to produce change
cents using the values in the constant arrays COIN_VALUES
and COIN_NAMES.

• In writing your program, you may assume that the currency is
designed so that the following strategy always produces the
correct result:
– Start with the last element in the array (in this case, dollars) and

use as many of those as possible.
– Move on to the previous element and give as many of those as

possible, continuing this process until you reach the number of
pennies.

• Assume that someone has written createRegularPlural,
which is exercise 9 in Chapter 7, on page 266.

Adding and Removing Elements
push(element, . . .)

Adds one or more elements to the end of the array.
pop()

Removes and returns the last element of the array.

splice(index, count, . . .)
Removes count elements starting at index, and optionally adds new ones.

shift()
Removes and returns the first element of the array.

slice(start, finish)
Returns a subarray beginning at start and ending just before finish.

unshift(element, . . .)
Adds one or more elements to the front of the array.

Although each of these has its use cases, we’ll initially focus on
the three most common operations: push, pop, and shift.

Growing an Array by Accretion
• The push method makes it possible to create an array by

adding one element at a time. This pattern looks like this:

function createArray(n, value) {
 let array = [];
 for (let i = 0; i < n; i++) {
 array.push(value);
 }
 return array;
}

• As an example, the following function creates an array of n
values, each of which is initialized to value:

let array = [];
for (whatever limits are appropriate to the application) {
 array.push(the new element);
}

Passing Arrays as Parameters
• When you pass an array as a parameter to a function or return

a function as a result, only the reference to the array is
actually passed between the functions.

• The effect of JavaScripts's strategy for representing arrays
internally is that the elements of an array are effectively
shared between the caller and callee. If a function changes an
element of an array passed as a parameter, that change will
persist after the function returns.

• The next slide simulates a program that does the following:
Generates an array containing the integers 0 to N-1.1.
Prints out the elements in the array.2.
Reverses the elements in the array.3.
Prints out the reversed array on the console.4.

The reverseArray Function

array
n array i

10 0

0
0

1

0 1
0 1

2

0 1 2
0 1 2

3

0 1 2 3
0 1 2 3

4

0 1 2 3 4
0 1 2 3 4

5

0 1 2 3 4 5
0 1 2 3 4 5

6

0 1 2 3 4 5 6
0 1 2 3 4 5 6

7

0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7

8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

9

0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9

10

Forward: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

array lh rh tmp
0 9 0

9 0

1 8 1

8 1

2 7 2

7 2

3 6 3

6 3

4 5 4

5 4

5

Reverse: [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

Other Array Methods
concat(array, . . .)

Concatenates one or more arrays onto the receiver array.
indexOf(element)

Returns the first index at which element appears, or –1 if not found.

reverse()
Reverses the elements of the array.

sort()
Sorts the elements of the array in ascending order.

lastIndexOf(element)
Returns the last index at which element appears, or –1 if not found.

The End

