
Lists In Python

Jerry Cain
CS 106AX

October 30, 2023
slides leveraged from those constructed by Eric Roberts

Arrays and Lists
• From the earliest days of computing, programming languages

have supported the idea of an array, which is an ordered
sequence of values.

• The individual values in an array are called elements. The
number of elements is called the length of the array.

• Each element is identified by its position number in the array,
which is called its index. In Python—as in almost all modern
languages, including JavaScript—index numbers begin with 0
and extend up to one less than the length of the array.

• Python implements the array concept in a more general form
called a list. Lists support all standard array operations, but
also allow insertion and deletion of elements.

• The terms list and array are often used interchangeably in
Python, but we’ll bias toward the former.

Creating Lists in Python
• The simplest way to create a list is to specify its elements

surrounded by square brackets and separated by commas, just
as you do in JavaScript. For example, the declaration

creates a list of the first ten prime numbers. primes[0] refers
to the 2, and primes[9] and primes[-1] each refer to the 29.

• Python lists, like JavaScript arrays, can store elements of any
type, including lists.

primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

days = ["Monday", "Wednesday", "Friday"]
cardinal = [0xC4, 0x1E, 0x3A]

board = [["X", "", ""], ["", "", "O"], ["", "", ""]]
pascal = [[1], [1, 1], [1, 2, 1], [1, 3, 3, 1]]

Cycling through List Elements
• The traditional for loop pattern we used to cycle over all

characters in a string generalizes to all Python lists. The
standard for loop pattern for doing so looks like this:

for element in list:
 Perform some operation on the element.

• As an example, the following function returns the sum of the
elements in the list:

def sumIntegerList(list):
 sum = 0
 for value in list:
 sum += value
 return sum

Python Sequences
• The last few slides should remind you of string operations,

which are almost identical.

• Strings and lists are both examples of a more general class of
objects in Python called sequences. All sequences support
the following operations:
– The len function
– Index numbering beginning at 0
– Negative index numbering that counts backward from the end
– Selection of an individual element using square brackets
– Slicing in all its forms
– Concatenation using the + or += operator
– Repetition using the * operator
– Inclusion testing using in operator (e.g., if 4 in numbers:)

Mutable vs. Immutable Types
• The most important difference between a list and a string is

that you are allowed to change the contents of a list while the
characters in a string are fixed.

• Types like strings for which you are not allowed to change the
individual components are defined to be immutable.

• Types like lists where the elements are assignable are said to
be mutable.

• Immutable types have many advantages in programming:
– You don’t have to worry about whether values will be changed.
– Values that are immutable can more easily be shared.
– Immutable objects are easier to use in concurrent programs.

• Despite these advantages, there are still situations in which
mutable types like lists are precisely what’s needed.

Methods that Return Information
list.index(value)

Returns the first index at which value appears in list or raises an error.
list.index(value, start)

Returns the first index of value after the starting position.
list.count(value)

Returns the number of times value appears in list.
list.copy()

Creates a new list whose elements are the same as the original.

Methods that Add and Remove Elements
list.append(value)

Adds value to the end of the list.
list.insert(index, value)

Inserts value at the specified index, shifting subsequent elements over.

list.clear()
Removes all elements from the list.

list.remove(value)
Removes the first instance of value, or raises an error if it’s not there.

list.pop(index)
Removes and returns the element at the specified index.

list.pop()
Removes and returns the last element of the list.

Methods that Reorder Elements
list.reverse()

Reverses the order of elements in the list.
list.sort()

Sorts the elements of list in increasing order.
list.sort(key)

Sorts the elements of list using key to generate the key value.
list.sort(key, reverse)

Sorts in descending order if reverse is True.

List Methods that Involve Strings
str.split()

Splits a string into a list of its components using whitespace as separator.
str.split(sep)

Splits a string into a list using the specified separator.
str.splitlines()

Splits a string into separate lines at instances of the newline character.
sep.join(list)

Joins the elements of list into a string, using sep as the separator.

Using Lists for Tabulation
• Lists turn out to be useful when you have a set of data values

and need to count how many values fall into each of a set of
ranges. This process is called tabulation.

• Tabulation uses lists in a different way from applications that
use them to store a list of data. When you implement a
tabulation program, you use each data value to compute an
index into a list of integers that keeps track of how many
values fall into that category.

• The example of tabulation used in the text is a program that
counts how many times each of the 26 letters appears in a
sequence of text lines. Such a program is useful in decoding
letter-substitution ciphers, which is one aspect of the topic of
cryptography covered in Assignment #4.

Poe’s Cryptogram Puzzle, Revisited
53‡‡†305))6*;4826)4‡•)4‡);806*;48†8¶
60))85;1‡(;:‡*8†83(88)5*†;46(;88*96*
?;8)*‡(;485);5*†2:*‡(;4956*2(5*–4)8¶
8*;4069285);)6†8)4‡‡;1(‡9;48081;8:8‡
1;48†85;4)485†528806*81(‡9;48;(88;4(
‡?34;48)4‡;161;:188;‡?;

8 33
; 26
4 19
‡ 16
) 16
* 13
5 12
6 11
(10
† 8
1 8
0 6
9 5
2 5
: 4
3 4
? 3
¶ 2
– 1
• 1

53‡‡†305))6*;4826)4‡•)4‡);806*;48†8¶
60))85;1‡(;:‡*8†83(88)5*†;46(;88*96*
?;8)*‡(;485);5*†2:*‡(;4956*2(5*–4)8¶
8*;4069285);)6†8)4‡‡;1(‡9;48081;8:8‡
1;48†85;4)485†528806*81(‡9;48;(88;4(
‡?34;48)4‡;161;:188;‡?;

53‡‡†305))6*;4E26)4‡•)4‡);E06*;4E†E¶
60))E5;1‡(;:‡*E†E3(EE)5*†;46(;EE*96*
?;E)*‡(;4E5);5*†2:*‡(;4956*2(5*–4)E¶
E*;40692E5);)6†E)4‡‡;1(‡9;4E0E1;E:E‡
1;4E†E5;4)4E5†52EE06*E1(‡9;4E;(EE;4(
‡?34;4E)4‡;161;:1EE;‡?;

53‡‡†305))6*THE26)H‡•)H‡)TE06*THE†E¶
60))E5T1‡(T:‡*E†E3(EE)5*†TH6(TEE*96*
?TE)*‡(THE5)T5*†2:*‡(TH956*2(5*–H)E¶
E*TH0692E5)T)6†E)H‡‡T1(‡9THE0E1TE:E‡
1THE†E5TH)HE5†52EE06*E1(‡9THET(EETH(
‡?3HTHE)H‡T161T:1EET‡?T

AGOODGLASSINTHEBISHOPSHOSTELINTHEDEV
ILSSEATFORTYONEDEGREESANDTHIRTEENMIN
UTESNORTHEASTANDBYNORTHMAINBRANCHSEV
ENTHLIMBEASTSIDESHOOTFROMTHELEFTEYEO
FTHEDEATHSHEADABEELINEFROMTHETREETHR
OUGHTHESHOTFIFTYFEETOUT

Implementation Strategy
The basic idea behind the program to count letter frequencies is
to use a list with 26 elements to keep track of how many times
each letter appears. As the program reads the text, it increments
the list element that corresponds to each letter.

0
0

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

0
10

0
11

0
12

0
13

0
14

0
15

0
16

0
17

0
18

0
19

0
20

0
21

0
22

0
23

0
24

0
25

GILLIRBSAWT

1 11 11 11 1221

The chr and ord Functions
• Python includes two built-in functions to simplify conversion

between an integer and the corresponding Unicode character.
They’re cousins to the String.fromCharCode function and
str.charCodeAt method you’ve seen in JavaScript.

• The chr function takes an integer and returns a one-character
string containing the Unicode character with that code.
– chr(32) ® " " (the space character)
– chr(65) ® "A" (an uppercase A)
– chr(960) ® " π " (the Greek letter pi)

• The ord function takes a one-character string and returns the
value of that character in Unicode.
– ord(" ") ® 32
– ord("A") ® 65
– ord("π") ® 960

Program to Count Letter Frequencies

Program to Count Letter Frequencies

Exercise: Display a Histogram
• Write a function showHistogram(scores) that takes a list of

scores in the range 0 to 100 and then displays on the console a
histogram of those scores divided into ranges 0-9, 10-19, and
so on.

• Histograms are usually presented vertically. The one in this
exercise is drawn horizontally because that program is so
much easier to write.

Reading Data from Files
• Applications that work with lists often need to work with lists

that are too large to enter by hand. In many cases, it is easier
to read the list values from a data file.

• A file is the generic name for any named collection of data
maintained on the various types of permanent storage media
attached to a computer. In most cases, a file is stored on a
local hard disk, though occasionally files get stored on
removable devices like USB drives.

• Files can contain information of many different types. The
most common type of file—and the primary type we’ll
consider in CS 106AX—is a text file, which contains
character data of the sort you find in a string.

Text Files vs. Strings

The information stored in a file is permanent. The value of a
string variable persists only as long as the variable does. Local
variables disappear when the function returns, unless that variable is
referenced by a closure in JavaScript or Python, in which case the
string typically vanishes when the program ends. Information stored
in a file exists until the file is deleted.

1.

Files are usually read sequentially. When you read data from a file,
you usually start at the beginning and read the characters in order,
either individually or in groups that are most commonly individual
lines. Once you have read one set of characters, you then move on
to the next set of characters until you reach the end of the file.

2.

Although text files and strings both contain character data, it is
important to keep in mind the following important differences
between them:

Reading Text Files
• The standard paradigm for reading a text file begins uses the

following code to open the file and associate it with a variable
used as its file handle:

with open(filename) as variable:
 Code to read the file using variable as the handle.

• The with statement, which you will use in Assignments #5
and #6, ensures that resources associated with the file are
released when Python reaches the end of the with body.

• Python offers several strategies for reading data from a file:
– Reading the entire file as a string using the read method.
– Reading lines from a files using readline or readlines.
– Using the file handle as an iterable.
– Using the read method together with splitlines.

Reading an Entire File as a String
• In many ways, the simplest strategy for reading a file is to use

the read method, which reads the entire file as a string, with
embedded newline characters (\n) to mark the ends of lines.

• For example, if seuss.txt is the file

calling read reads the entire file into a string like this:

One fish
two fish
red fish
blue fish.

O n e f i s h \n t w o f i s h \n r e d f i s h \n b l u e f i s h . \n

• One downside to this approach is that reading an entire file
into a single string can require a large amount of memory if
the file itself is large.

Reading One Line at a Time
• Python offers several methods for reading a line from a file:

– The readline method reads the next line with its newline.
– The readlines method reads lines (with newlines) into a list.
– The file handle can be used as an iterable.

• The primary drawback with these strategies is that the newline
characters are retained as part of each line, which is rarely
what you want.

with open(filename) as f:
 for line in f:
 code to process the line.

• Of these, the last strategy is often the easiest and works well
when used as follows:

Finding the Longest Line in a File
• So long as you are working with files of modest size, the

simplest way to read a file as a list of lines is to combine the
read method from the file class with the splitlines method
from the string class, as follows:

• The advantage of this approach is that splitlines strips the
newline characters from the end of each line.

with open(filename) as f:
 lines = f.read().splitlines()
 Code to process the lines of the file.

Exception Handling
• When you are opening a file for reading, it is possible that the

file does not exist. Python handles this situation—and many
other errors or events that occur during execution—using a
mechanism called exception handling, which has become a
standard feature of modern programming languages.

• In Python, an exception is an instance of a class that is part of
hierarchy of exception classes. This hierarchy contains many
exception types used for different purposes. File operations,
for example, use the exception class IOError.

• If the open function encounters an error, such as a missing
file, it reports the error by raising an exception using IOError
as its exception type. Raising an exception terminates
execution unless your program includes a try statement to
handle that exception, as described on the next slide.

The try Statement
• Python uses the try statement to indicate an interest in

handling an exception. In its simplest form, the syntax for the
try statement is

• The range of statements in which the exception can be caught
includes not only the statements enclosed in the try body but
also any functions those statements call. If the exception
occurs inside some other functions, any nested stack frames
are removed until control returns to the try statement itself.

try:
 Code in which exceptions may occur.
except type:
 Code to handle the exception.

where type is the class name of the exception being handled.

Requesting an Existing File
• The following function repeatedly asks the user to supply the

name of an existing file until the file can be opened for input:

• If the open call succeeds, the body of the with statement
simply returns the filename without reading any data. If an
IOError exception occurs, the except clause prints an error
message and returns to the while loop to try again.

def getExistingFile(prompt="Input file: "):
 while True:
 filename = input(prompt)
 try:
 with open(filename):
 return filename
 except IOError:
 print("Can't open that file")

The End

