
Python and Objects

Jerry Cain
CS 106AX

November 3, 2023
slides are leveraged from those previously constructed by Eric Roberts

Review: Classes and Objects
• While studying JavaScript, classes, and object orientation, we

emphasized the distinction between classes and objects:
– A class is a pattern that defines the structure and behavior of

values of a particular type.
– An object is a value that belongs to a class. A single class can

be used to create any number of objects, each of which is an
instance of that class.

• The JSGraphics library, for example, defines a GRect class.
In your Breakout assignment, you created many instances of
the GRect class—one for each brick and one for the paddle—
each of which was a separate object.

Thinking About Objects

with thanks to Randall Monroe at xkcd.com

client implementationabstraction boundary

I need a bunch of GRects.

JSGraphics.js

GRect
GOval
GLine
GLabel

...

GRect class
location
size
color
fill status
fill color

JSGraphics.js

GRect
GOval
GLine
GLabel

...

The Purposes of Objects
• Python uses the concepts of objects and classes to achieve at

least three different goals:
– Aggregation. Objects make it possible to represent collections

of independent data values as a single unit. In Python, such
collections are traditionally called records.

– Encapsulation. Classes make it possible to store data values
together with the operations that manipulate them. In Python,
the data values are called attributes, and the operations are
called methods.

– Inheritance. Class hierarchies make it possible for a class that
shares some attributes and methods from a previously defined
class to inherit those definitions without explicitly repeating
the definitions. We won’t speak about inheritance that much
this quarter, but it’s a hallmark feature of OOP and studied
extensively in later courses, particularly CS108.

Scrooge and Marley in Python

name

"Ebenezer Scrooge"

title

"founder"

salary

1000

name

"Bob Cratchit"

title

"clerk"

salary

15

• While learning about aggregates during the JavaScript
segment, we contrived a narrative about a tiny company
employing Ebenezer Scrooge and Bob Cratchit. We’ll revisit
the example and work to promote our aggregates—or
records, as they’re called in Python—to classes.

Classes as Templates
• The objects on the preceding slide are both instances of the

same class, which for the moment means they share the same
attributes. The class itself is visually defined by the template:

name

title

salary

• Class definitions in Python, however, are sufficiently complex
that it helps to start by using an empty template that creates
blank-slate objects and then filling in the necessary fields.

Defining a Blank-Slate Class
• Class definitions in Python start with a header line consisting

of the keyword class followed by the class name.

class Employee:
 """This class has an empty body"""

• Although the body of a class will later contain definitions of
attributes and methods, it is possible to define a blank-slate
version of the Employee class by leaving the body empty:

• Python’s syntactic rules do not allow an empty body. You can
either use a docstring as in this example or the keyword pass.

• Once you have defined the Employee class, you can create an
empty Employee object like this:

clerk = Employee()

Object Values are References
• It is important to keep in mind that objects—like all values in

Python—are stored as references. The blank-slate template
created by the preceding slide therefore looks like this:

clerk

• Any code that has access to this reference can manipulate the
contents of the object. In particular, the reference allows code
to get and set the contents of existing attributes or to create
new ones.

Creating an Employee by Assignment

clerk

name
"Bob Cratchit"

title
"clerk"

salary
15

In Python, you can create a new
attribute simply by assigning it a
value, in much the same way that
assigning a value to a variable
creates a new local variable in the
current frame.

Constructors
• Although the strategy from the preceding slide creates an

Employee object with the correct contents, making the client
responsible for creating the attributes violates the spirit of
object-oriented programming. The details of the data structure
are the implementor's responsibility, not the client's.

• A better strategy for creating a new Employee object is to
define a method called a constructor, which is responsible for
initializing the attributes to the object.

• In Python, you define a constructor by implementing a special
method called __init__, which is automatically called when a
client uses the class name as a function.

• The first parameter to the __init__ method is called self and
contains a reference to the new object. Any other arguments
provided by the client are passed as additional parameters.

A Constructor for the Employee Class

clerk
self name title salary

"Bob Cratchit" "clerk" 15

name

title

salary

"Bob Cratchit"

"clerk"

15

Defining Additional Methods
• In addition to the constructor, most classes define additional

methods that allow clients to read or update attributes of the
object or to manipulate the object in some way.

• Methods always declare an explicit parameter self at the
beginning of the parameter list, just as the constructor does.
A method definition therefore looks like this:

def name(self, other parameters):
 . . . body of the method . . .

• Whenever the client calls a method on an object, Python
initializes self to be a reference to the receiver, which is the
object to which the method is applied.

Getters and Setters
• The simplest methods to describe are those that retrieve the

value of an attribute, which are called getters, and those that
set an attribute to a new value, which are called setters.

• Getters are much more common than setters. You need to
think carefully before providing a setter as to whether you
want clients to be able to change the attribute.

• The following definitions show the getter and setter for the
salary attribute of an Employee object:

def getSalary(self):
 return self.salary

def setSalary(self, salary):
 self.salary = salary

Lists of Objects
• Because lists can contain values of any type, the elements of a

list can be objects. For example, a list of the employees at
Scrooge and Marley can be initialized like this:

SCROOGE_AND_MARLEY = [
 Employee("Ebenezer Scrooge", "founder", 1000),
 Employee("Bob Cratchit", "clerk", 15)
]

• The following function prints the payroll for the roster of
employees supplied as an argument using our getter methods:

def printPayroll(roster):
 for emp in roster:
 print(emp.getName() +
 " (" + emp.getTitle() + "): " +
 str(emp.getSalary()))

Converting Objects to Strings
• If for no other reason than that doing so simplifies debugging,

it is good practice to include a __str__ method in each class
to convert an object to a string.

• This definition allows you to simplify the printPayroll
function to this much shorter form:

def printPayroll(roster):
 for emp in roster:
 print(emp)

def __str__(self):
 return self.name + " (" + self.title + "): " +
 str(self.salary)

• The __str__ method for the Employee class looks like this:

The End

