Data-Driven Programs

Jerry Cain
CS 106AX
November 8th, 2023

slides constructed by Eric Roberts

Data-Driven Programs

* In most programming languages, data structures are easier to
manipulate than code. As a result, it 1s often useful to design
applications so that as much of their behavior as possible 1s
represented in data rather than in the form of methods.
Programs that work this way are said to be data-driven.

* In a data-driven system, the actual program (which 1s usually
called a driver) 1s generally very small. Such driver programs
operate 1n two phases:

1. Read data from a file into a suitable internal data structure.

2. Use the data structure to control the flow of the program.

* To 1llustrate the idea of a data-driven system, most of this
lecture focuses on writing a "teaching machine" of the sort
that information technology pioneer and author Ted Nelson
discusses (mostly critically) in his book, Dream Machines.

The Course Data File

In the teaching machine application, the course designer—who
1s an expert in the domain of instruction but not likely a
programmer—creates a data file that serves as the driver. The
general format of the file 1s shown on the left, and a specific
example of a question and 1ts answers appears on the right.

identifying name for the first question RemQ1
: What is the value of 17 % 47
text of the first question a0
————— b. 1
response,: name of next question c. 3
response,: name of next question d. 4
responses: name of next question a: RemQ2
0: RemQ2
b: PrecQl
1: PrecQl
c: RemQ2
. . 3: RemQ2
. . . Other question/answer entries . . . d: RemQ2
4: RemQ2

Choosing an Internal Representation

The first step in building the teaching machine 1s to design a set of
classes that can represent the data and their relationships in the file.
All relevant data should be accessible from a single structure that
contains all relevant information 1n a nested series of classes.

course

TMCourse

questions

TMQuestion

J

name — question

name

text

J

answers

J

string — name

F

array of strings

Converting External to Internal Form

DivQl
What is the value of 3 / 2?

DivQ2
The / operator produces floats.
What is the value of 9 / 37

DivQ3

What is the value of 5 / 4?
1.25: DivQ4

*: DivQ2

DivQ4
What is the wvalue of 9 // 4?

The TeachingMachine Program

File: TeachingMachine.py
from TMCourse import TMCourse

def TeachingMachine () :
course = readCourseFile()
course.run()

def readCourseFile() :
while True:

try:
filename = input("Enter course name: ")
with open(filename + ".txt") as f:

return TMCourse.readCourse (f)

except IOError:

print ("Please enter a valid course name.")

Startup code

__ == "__main__":
TeachingMachine ()

if name

The T™™Course Class

File: TMCourse.py
from TMQuestion import TMQuestion
class TMCourse:

def __init__ (self, questions):
self._questions = questions

def run(self):
current = "START"
while current '= "EXIT":
question = self._questions[current]
for line in question.getText () :
print (line)
answer = input("> ") .strip() .upper()
next = question.lookupAnswer (answer)
1f next is None:
print ("I don't understand that response.")
else:
current = next

The TMCourse Class

Implementation notes

#

To make sure that the course starts at the first
question, this method always includes an entry
labeled "START" in the question table.

@staticmethod

def readCourse (f) :
questions = { }
while True:

question = TMQuestion.readQuestion (f)

1if question is None: break

if len(questions) ==
questions["START"] = question

name = question.getName ()

questions[name] = question

return TMCourse (questions)

The TMQuestion Class

File: TMQuestion.py

class TMQuestion:
def __init__ (self, name, text, answers):
self._name = name
self._text = text
self._answers = answers

def getName (self):
return self._name

def getText (self):
return self._text

def lookupAnswer (self, response):
next = self._answers.get (response, None)
i1f next is None:
next = self._answers.get("*'", None)
return next

The TMQuestion Class

@staticmethod
def readQuestion(f) :
name = f.readline() .rstrip()
i1f name == "":
return None
text = []
while True:
line = f.readline() .rstrip()

if line == MARKER: break
text.append(line)
answers = { }

while True:
line = f.readline() .rstrip()

if line == "": break
colon = line.find(":")
if colon == -1:

raise ValueError ("Missing colon in " + line)
response = line[:colon].strip() .upper ()
next = line[colon + 1:].strip()
answers [response] = next
return TMQuestion (name, text, answers)

The End

